
A Test Set for Molecular Dynamics AlgorithmsEric Barth1, Benedict Leimkuhler2, and Sebastian Reich31 Department of Mathematics and Computer Science, Kalamazoo College,Kalamazoo, MI 49006, U.S.A. (barth@kzoo.edu).2 Department of Mathematics and Computer Science, University of Leicester,Leicester, LE1 7RH, UK (bl12@mcs.le.ac.uk).3 Department of Mathematics, Imperial College, London, SW7 2BZ, UK(s.reich@ic.ac.uk).Abstract. This article describes a collection of model problems for aiding numeri-cal analysts, code developers and others in the design of computational methods formolecular dynamics (MD) simulation. Common types of calculations and desirablefeatures of algorithms are surveyed, and these are used to guide selection of rep-resentative models. By including essential features of certain classes of molecularsystems, but otherwise limiting the physical and quantitative details, it is hopedthat the test set can help to facilitate cross-disciplinary algorithm and code devel-opment e�orts.1 Introduction and BackgroundOver the past two decades, computational scientists have turned increasingattention to the �eld of molecular modeling. Important advances have beenmade in the design of e�cient algorithms for problems such as fast summa-tion methods for computing non-bonded atomic interactions [1,2], long-timenumerical integration of equations of motion[3{5], non-Newtonian dynamicalformulations for simulation in a variety of statistical mechanical ensembles[6{8], and optimization. These projects have often involved mathematiciansand/or computer scientists who, though adept at algorithm and softwaredevelopment, may possess limited or no physical and chemical knowledge.An important step in the development of a computational method is test-ing on model problems which possess characteristic properties yet are as sim-ple as possible so that numerical experiments are not too time consuming.The purpose is generally to assess the performance of a particular methodin connection with certain targeted model features. As increasingly complexcomputational approaches appear in the literature, it is becoming evidentthat the choice of proper test systems can greatly ease code comparisons andalgorithm development.Compilations of test problems have become well established in other�elds, for example in optimization [9{11] and di�erential equations [12,13].The CASP project [14] (Critical Assessment of techniques for protein Struc-ture Prediction) provides a testbed for objective testing and comparison ofmethods for identifying protein structure from sequence. To our knowledge,



no similar collection exists for design and evaluation of molecular dynamicsmethods.We have assembled here a few elementary models drawn primarily fromthe molecular simulation literature. Our goal is to provide adequate detail sothat an applied mathematician, with little access to MD codes and virtuallyno chemical/physical understanding, could|based only this paper|performsimulations that resemble, in relevant ways, the more complex problems ofcurrent research interest. Our �rst step is to introduce a basic vocabulary formolecular dynamics and to recall some of the standard types of calculationsbeing undertaken in the scienti�c literature. We then focus on certain types ofproblems, including a Lennard-Jones liquid, a water model, and some smallconformational models. In each case, we elucidate the role of the problemin the literature and any special features that it illustrates. The article isself-contained, in the sense that all mathematical details and parameters areprovided either in the paper or on the test set web site. The ongoing progressof the test set project, with further models and accompanying software, willbe reported on the internet at the web site http://www.mmc.le.ac.uk/mdt.1.1 Common features of molecular dynamics modelsFor model problems to be useful, they must possess characteristic propertiesrepresentative of the challenges encountered in molecular modeling. Here webegin by briey discussing the common (classical) molecular dynamics modeland the di�culties such a model presents for simulation.Purely collisional \hard sphere" systems were the �rst to be studied bymolecular simulation [15], and work has continued in this area, for exampleextending to hard ellipsoids and to hard sphere systems in soft potentials[16{19]. In this preliminary version of the test set, we concern ourselves onlywith smooth potential models such as the monatomic uids which were �rstdiscussed by Rahman [20] and Verlet [21]. These early computer experimentsdemonstrated that the equilibrium state of argon could be well described bythe two-body Lennard-Jones potentialV (r) = 4����r �12 � ��r �6� (1.1)with r being the distance between a pair of particles, � giving well depth, and� being proportional to the equilibrium atomic separation. A representativeLennard-Jones potential is shown in Fig. 1.N particles are arranged in a cubicbox with edges of length L, with periodic boundary conditions imposed sothat at any instant a particle with coordinates x; y; z inside the real box isassociated to an in�nite number of periodic images with coordinates obtainedby adding or subtracting multiples of L from each coordinate. The Cartesianpositions ri = [xi yi zi]T of the N particles can be assembled into a collectiveCartesian position vectorr = [x1 y1 z1 x2 y2 z2 : : : xN yN zN ]T
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Fig. 1. The Lennard-Jones potential with � = � = 1.= [rT1 rT2 : : : rTN ]T ;where the superscript T denotes a matrix transpose. The potential energy ofthe Lennard-Jones system isV (r) = NXi<j 4� � �rij �12 �� �rij �6! ;where the sum is taken over pairs of atoms (i, j) with separations de�ned byrij = jjri � rj jj2:The Newtonian equations of motion can then be expressed asM�r = F(r) := �rrV (r);where M is a diagonal mass matrix with diagonal[m1 m1 m1 m2 m2 m2 : : : mN mN mN ];and mi the mass of the ith particle. The gradient rrV is the column vectorof all partial derivatives with respect to particle positions. It is easily veri�edthat the total energy E = _rTM _r2 + V (r)is an integral of motion: dE=dt = 0. An alternative description of the systemis obtained by expressing the energy as a Hamiltonian function H of positionsq and momenta p, where p =M_q; the equations of motion then become_q = rpH(q;p)_p = �rqH(q;p):



The system is typically simulated from given positions and velocities r(t0) =r0, _r(t0) = _r0 often chosen randomly in accordance with some appropriatestatistical ensemble.There are number of computational challenges to be addressed in the sim-ulation of a Lennard-Jones uid. First, the bulk of the computational workis spent evaluating the forces between the 12N(N � 1) pairs of atoms, eventhough the interaction between many (distant) pairs is very weak. This dif-�culty was remedied by Verlet by imposing distance cuto�s by which thepotential was approximated by zero for all atomic separations greater thana certain cuto� value rc (2.5�{3.3�). The now-famous Verlet table was in-troduced, by which all distances are occasionally computed, and those pairswithin distance rM , rM > rc, are recorded in a table. Successive force evalua-tions include only the entries in the table. Provided that the \skin" rM�rc issu�ciently thick, no particle pairs can move undetected into the cuto� rangebetween table updates.A second issue is the choice of time discretization scheme. The methodproposed by Verlet propagated positions byrn+1i = �rn�1i + 2rni + h2Fni ; (1.2)and velocities using vni = �rn+1i � rn�1i � =2h: (1.3)Here the superscripts denote the indices of timesteps, each of which is of sizeh, so rni � ri(t0 + nh);and Fni = �rriV (rn) is a Cartesian vector which gives the sum of forcesacting on particle i due to interaction with all other particles (within thecuto� range), evaluated at the point rn.In his ground-breaking paper, Verlet reported \. . . small irregularities inthe total energy. . . but the error is of no consequence." The discretizationmethod (1.2){(1.3) is obviously time-reversible, which has sometimes beenmentioned as the reason for its excellent stability. In fact, though, it is nowknown that it is rather the symplectic conservation property [22] of the Verletmethod, viewed as an appropriate mapping of positions and momenta, thatconfers its excellent long-term energy stability [23{25]. The Verlet methodis now regarded as the gold standard for timestepping schemes in moleculardynamics.In the 1970s, interest developed in applying molecular dynamics meth-ods to more complicated molecular uids such as water [26], molecular uidswith internal degrees of freedom [27] and large exible molecules [28]. TheMD pair potential requires many modi�cations in these cases. The interactionbetween polyatomic molecules is modeled by pair potentials, both Lennard-Jones and coulombic, between all constituent atoms as opposed to generalmolecule-molecule interactions. Also, the model potential must maintain in-tramolecular geometries by including the \bonded" terms: bond lengths, bond



angles, and dihedral angles. The result is the molecular modeling potentialfunction which generally is of the form:V (r) = Vb + Va + Vd + Vi + VLJ + VC ; (1.4)where Vb, Va, Vd and Vi represent bonds, angles, dihedral angles (torsions),and improper torsions, respectively. These consist of sums over various pairs,triples and quadruples of spatially localized bonded groups of atoms. VLJ isthe sum of Lennard-Jones contributions for all pairs of atoms, and VC is theCoulombic potential due to charge-charge interactions. Representative termsof each sum are shown in Table 1. The various potential terms are describedin more detail in section 3.Table 1. Functional forms for the terms in the molecular dynamics potential .bonded termsVb bij
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�b, ��, ��, . . . , and equilibrium values beq, �eq, �eq, . . . , in table 1 are de-termined empirically for interactions involving each possible combination ofatoms. Many potential parameterizations are available, including CHARMM[32,33], AMBER [34,35] and OPLS [36]. A list of references to these and otherMD potentials can be found in [37].The MD potential is highly nonlinear, with many local minima. Mini-mization of the potential energy is a common task, but the nonpolynomialproliferation of local minima frustrates attempts to determine lowest energystates for modeled systems [38]. Also, the �nite-time dynamics of a nonlinearmultiple-minima system can become trapped in one potential energy well,which impedes conformational sampling. The terms in the potential repre-sent interactions on a wide range of spatial scales (from bonds of length1 �A=10�10 m, to coulombic interactions which extend throughout the mod-eled system) and timescales (the fastest bonds have a period of 10 fs=10�14 s,while large scale conformational interconversions may occur on the scale ofseconds). Timestepping algorithms such as the Verlet method (1.2){(1.3) re-quire a timestep which is su�ciently short (0.5{1.0 fs) to resolve the fastestbonded motion, meaning that a computed trajectory which spans a time in-terval of one nanosecond (10�9 s) requires one million dynamics steps. Aswith the earliest molecular dynamics simulations, the great majority of thecomputational work is expended in computing the forces of interaction. Un-like the Lennard-Jones case, where the forces decay very rapidly at moderateatomic separations, the Coulombic 1=r2 forces are non-negligible even at largeseparations, making distance cuto�s unphysical and undesirable. Intense ac-tivity is ongoing on the problems of e�cient timestepping and fast evaluationof non-bonded forces without distance cuto�s.The MD potential function has several characteristics which have an im-pact on the performance of numerical methods: multiple minima, wide rangeof time and space scales, and long-range interactions between many particles.It is these features which the model problems presented below are designedto capture.2 Newtonian and Non-Newtonian DynamicsOne can view the simplest \molecular system" as consisting of two atomswith masses m1 and m2 and some pairwise interaction potential V (r),r = jjr1 � r2jj2 =p(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2:The associated Newtonian equations of motion are easily identi�ed asm1�r1 = �V 0(r)r (r1 � r2); m2�r2 = �V 0(r)r (r2 � r1): (2.5)The interaction potential V (r) can, for example, be taken as the Lennard-Jones potential (1.1) or one of the common models for a chemical bond:



the harmonic bond potentialV (r) = �b2 (r � r0)2 (2.6)or the Morse oscillator bond potential [39,40]V (r) = D(1� exp(��r)): (2.7)In case of (1.1), bounded motion is observed if the total energyE = m12 jj _r1jj2 + m22 jj _r2jj2 + V (kr1 � r2k)is negative and collisional dynamics if E > 0. Since these are the elementaryinteractions occurring in any molecular simulation, they provide a �rst simpletest case for any numerical integration method.With the mass matrix M de�ned in the introduction, the Newtonianequations (2.5) are equivalent to the system of �rst order equations_r = v; (2.8)_v = �M�1rVr(r): (2.9)This system possesses two fundamental geometric structures: (i) it is Hamil-tonian, and (ii) it respects a time-reversal symmetry. The preservation ofthese geometric structures has been shown to be important for long-termstability of numerical simulations [22,41,42]. In practice, numerical methodswhich preserve these properties exhibit excellent conservation behavior alongcomputed trajectories.Note that, besides total energy, linear momentumP = NXi=1mi _riand angular momentum L = NXi=1miri � _riare integrals of motion for a system ofN particles (in the absence of boundaryconditions). These quantities should be well conserved by integration methodssuitable for molecular simulations.2.1 ConstraintsA common modeling strategy in molecular dynamics is to maintain atoms at�xed separations by the use of constraint relations in Cartesian coordinates.This approach can be generalized to freeze other relationships among thevariables, as well.



The positions r and velocities v of the system evolve according to theconstrained Euler-Lagrange equations,_r = v; (2.10)M _v = �rVr(r) + g0(r)T� (2.11)0 = g(r): (2.12)Here the constraint relations gi(r) = 0, i = 1; : : : ;m, are written compactlyas g(r) = 0, with g = (g1; g2; : : : ; gm)T and g0 denotes the matrix of partialderivatives of g with respect to the atomic coordinates. A popular integratorfor (2.10){(2.12) is the Rattle discretization [43]. For implementation details,see [44,45].Applied to the diatomic system (2.5), the constraint in (2.12) which main-tains the two atoms at a separation of Leq is given byg(r) = 12 �(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2 � L2eq� ;and the matrix of partial derivatives is given byg0(r) = [x1 � x2; y1 � y2; z1 � z2; x2 � x1; y2 � y1; z2 � z1]T :The dynamics of the constrained diatomic system consists entirely of rigidbody rotation and translation, because all interatomic motion has been elim-inated by the constraint.An extended chain of N atoms connected by constraints, shown in Fig. 2,is a useful test system. Here the constraints take the form
Fig. 2. An extended constraint chain.gi(r) = 12(kri � ri+1k2 � L2i ) = 0for i = 1; : : : ; N � 1. If one end of the chain is to be �xed at position L0, theadditional constraint would be g0(r) = 12 (kr0k2 � L20) = 0. Let us numberthe multipliers �0; �1; : : : ; �N�1. Then the equations of motion are, for anyof the internal nodes of the chain (i = 2; : : : ; N � 1),_ri = vimi _vi = Fi � �i�1(ri � ri�1)� �i(ri � ri+1);



whereas the last node obeys_rN = vNmN _vN = FN � �N�1(rN � rN�1):If the �rst node is not maintained at a �xed position, the di�erential equationsare _r1 = v1m1 _v1 = F1 � �1(r1 � r2):If the �rst node is �xed, then we have_r1 = v1m1 _v1 = F1 � �0r1 � �1(r1 � r2):The inter-particle forces Fi could be chosen to suit a particular modelingobjective. With a Lennard-Jones interaction potential, the resulting chain isfully exible as in certain polymer models. We could impose potentials forangles, dihedrals, and Coulombic interaction of non-bonded pairs, makingthis a model for a protein chain, which we discuss in section 3.4.2.2 Dynamics at Constant Temperature and PressureGiven the small physical dimension of an individual atom, it is not obviousthat the simulation of a collection of particles, even many thousands or mil-lions of atoms, can tell us much about the properties of a realistic system.Only when certain assumptions of statistical mechanics are invoked can weextrapolate from the miniscule region of space where our simulation evolvesto the aggregate behavior of the much larger system. Moreover, it rarelymakes sense to view an MD model as maintaining a constant total energy.The system is instead usually viewed as continually exchanging energy witha larger bath of molecules at a certain prescribed temperature, sometimesmodeled stochastically, sometimes dynamically.Statistical mechanics requires that we �rst identify an appropriate densityor ensemble of states with respect to which all averages are computed. Sucha density � is a steady state of the Liouville equationd�dt = f�;Hg = rr� � rpH �rp� � rrH:A typical assumption is that � be a function of H . If we assume constantenergy H = E in a given system of N atoms constrained within a volumeV , we refer to the associated distribution of states as the (N; V;E) or micro-canonical ensemble. The corresponding density of states is� = �[H �E]



meaning that the sampling is conducted with respect to uniformly distributedstates on the energy surface H = E. The canonical or (N; V; T ) ensemble has� = exp(� HkBT );where kB is the Boltzmann constant and T is the target temperature. Otherimportant examples of distributions include the constant pressure, tempera-ture and particle number (TP) ensemble and the grand canonical ensemble(in which both energy and particle number are allowed to uctuate). It isimportant to bear in mind that the \constancy" of a quantity such as tem-perature does not actually mean that the instantaneous temperature de�nedby T = 13kBN NXi=1mikvik22 (2.13)is held constant along trajectories (although in fact such a constraint canbe imposed and certain quantities can be accurately computed from such anisokinetic model [46]).If molecular dynamics is to be used to sample from a given ensemble,it is essential that the averages taken along trajectories reproduce the ap-propriate ensemble average. This requires ergodicity: that a given trajectorywill eventually visit all states with � > 0. We can only reasonably expectour method to sample the microcanonical ensemble if we limit ourselves to aconservative (Newtonian) formulation, but it is not clear that the ergodicityassumption will hold in all cases. Indeed, for very low dimensional systems, itis common to �nd periodic orbits or quasiperiodic tori motion in a restrictedportion of phase space; in such cases, the constant energy dynamics is notergodic. Some modi�cation of the dynamical system (or the introduction ofa stochastic perturbation) would be necessary to make the dynamics samplethe other ensembles, for example the canonical one. There are many ways todo this, but the most popular techniques are Nos�e dynamics and Langevindynamics.In Langevin dynamics, the combination of a damping force and a speciallychosen stochastic term maintains the system at a given temperature [47]. Theequations of motion are given by_r = v;M _v = �rVr(r) � Mv+R(t);with collision parameter . The random-force vector R which is a stationaryGaussian process with mean and covariance given byhR(t)i = 0 hR(t)R(t0)T )i = 2kBTM�(t� t0);where � denotes the Dirac function.



In Nos�e dynamics, the Hamiltonian is extended into a larger dimensionalphase space, augmented by a thermostatting variable and its canonical mo-mentum. The Nos�e extended Hamiltonian corresponding to a system withHamiltonian H(r;p) = 12pTM�1p+ V (r) takes the form~H = 12�2pTM�1p+ 12Q�2 + V (r) + gkBT ln�where � and � represent the thermostatting variable and its canonical mo-mentum, respectively. Here Q is an arti�cial thermostat \mass" which mustbe chosen carefully to assure that the thermostat is properly coupled to dy-namics of the system; see [48,49] for discussion of the choice of mass. Thearti�cial scaling of the kinetic term impedes sampling, particularly the recov-ery of time-correlated averages; various reformulations of the Nos�e dynamicalformulation have been proposed which correct the timescale and facilitate theuse of time-reversible [6] or lately symplectic [8] discretization.One of the problems with using low-dimensional model problems is thelack of ergodicity that such systems tend to exhibit. Any of the model prob-lems given here could be treated using Langevin dynamics or a Nos�e thermo-stat. Moreover, it is possible to augment a thermostatted system by anotherthermostat (or multiple thermostats) and there is evidence that this can insome cases further improve the sampling properties [50,51].2.3 Formulae for various computable quantitiesSimulations of molecular systems can be assessed by considering a number ofquantities calculated from the computed trajectories. The atomic masses, po-sitions and velocities can be used to calculate macroscopic quantities such astemperature and internal energy. Under the ergodicity assumption, a macro-scopic quantity A, which for real systems could be observed or measured, canbe thought of as a long-time average hA(t)it of some (instantaneous) functionA(t) which depends on the collective position and velocity at time t, as wellas the masses. The long-time average is de�ned ashAit = limt!1 1t Z t0 A(�) d�:In practice, trajectories are computed at a large �nite number of discretetimes �1; : : : ; �N , in which casehAit = 1�N NXk=1A(�i):Some macroscopic quantities of interest are collected in table 2. In thistable, the Boltzmann constant is denoted kB , and instantaneous temperature



T is proportional to kinetic energy and is de�ned as in (2.13). Speci�c heat atconstant volume measures the rate of change of temperature due to a changein energy. The velocity autocorrelation function measures how the velocitiesat time t are related to velocities at a later time t + � . The pair correlationfunction, or radial distribution function for a system of particles with volumeV , gives the number of particles n(r) situated at a distance between r andr + �r from another particle (�r = 0:016� in [52]). Experimental data isgiven in [53,54]. The mean square displacementR(�) measures average atomicmovement over time windows of length � . With t = 0, the value of � atwhich R ceases to change signi�cantly can be understood as the time requiredfor a simulated system to achieve equilibrium. The di�usion coe�cient D isproportional to the slope of R(�) over long times via the Einstein relation.More details for computing these quantities can be found in Allen andTildesley [55], Rapaport [56], and Frenkel and Smit [57].Table 2. Some Computable quantitiesSpeci�c Heat at constant volumeCV = � 23N � 49 h(T � hT it)2ithT i2t ��1 kBVelocity autocorrelation functionZ(�) = D 1N v(t) � v(t+ �)EtPair correlation function (radial distribution function)g(r) = � VN n(r)(4�r2�r)�tMean square displacement after time �R(�) = * 1N NXi=1 (ri(t+ �)� ri(t))2+tDi�usion coe�cient, D, 2�D = 13R(�)



2.4 UnitsThe quantities of interest in a molecular simulation are extremely small inSI units (kilograms, meters, seconds). It is convenient (and numerically morefeasible) to choose units that are closely associated with the modeled system.In the case of a Lennard-Jones uid, the potential energy parameters providea natural system of units: � as the unit of energy, � as unit length andthe particle mass m as unit mass. Noting that the dimensions of energy aremass�(length)2=time2, we can derive the unit time as �(m=�)1=2. Similarlyother quantities of interest can be represented in reduced units. We haveincluded Table 3 from Gould and Tobochnik [58] which speci�es the systemof units for particles in a Lennard-Jones potential.Table 3. System of units for molecular dynamics simulation of a Lennard-Jones particle system. The quantity kB is Boltzmann's constant, with valuekB = 1:38 � 10�23 J/K.quantity unit value for argonlength � 3.4�10�10 menergy � 1.65�10�21 Jmass m 6.69�10�26 kgtime �(m=�)1=2 2.17�10�12 svelocity (�=m)1=2 1.57�102 m/sforce �=� 4.85�10�12 Npressure �=�2 1.43�10�2 N�m�1temperature �=kB 120 KAs with the Lennard-Jones system, the choice of units for the general MDmodel is signi�cant. Thus, if the AKMA system is used (unit length is theangstrom, unit energy is the kilocalorie/mole, unit mass is the atomic massunit (amu) and unit charge is taken as the electron charge e, and the unittemperature is expressed in K, as in CHARMM for example), then the unittime corresponds to 20.455 ps, Boltzmann's constant is kB = 1:987191�10�3and the coulomb constant in (1.4) is 1=(4��0) = 3:320716�102. (An adequateprogramwill, of course, convert from and to time units in picoseconds at inputand output).3 The model problemsHere we present the test problems. We have organized them with the simplestmodels �rst. In each case, we cite publications in which the problems havebeen used. We indicate the feature of each problem which makes it relevantfor molecular dynamics methods. We describe the analytical techniques whichhave been used to assess the performance of numerical methods.



3.1 Systems of three atomsAfter considering the diatomic system in section 2, the next step is threebody systems, either in bounded or collisional motion. Let us, for example,consider a simple tri-atomic molecule that resembles a single water molecule.We have two hydrogen atoms with position rH1, rH2 respectively, and massmH = 1amu, and a single oxygen atom with position rO and mass mO =16 amu. The potential energy function isV = �b2 (rOH1 � r0)2 + �b2 (rOH2 � r0)2 + ��2 (� � �0)2;where � is the bond angle between the O-H1 and the O-H2 bond de�ned bycos(�) = rOH1 � rOH2jjrOH1jj jjrOH2jj ;rOHi = rO � rHi, i = 1; 2. Parameter values can be taken from table 4 [59].It is often assumed that the bond stretching and bond bending modes canbe replaced by rigid approximationsrOH1 � r0 = 0; rOH2 � r0 = 0; � � �0 = 0as we discussed in section 2. In fact, that leads to the approximation of a singlewater molecule as a rigid body with frozen atomic distances rOH1 = rOH2 = r0and rHH = jjrH1�rH2jj = r1. The associated constrained equations of motionare mH�rH1 = ��1(rH1 � rO)� �2(rH1 � rH2);mH�rH2 = ��3(rH2 � rO)� �2(rH2 � rH1);mO�rO = ��1(rO � rH1)� �3(rO � rH2);where the Lagrange multipliers �i, i = 1; 2; 3, are implicitly determined bythe three (holonomic) constraintsrOH1 = rOH2 = r0; rHH = r1:Numerical integration of these constrained equations of motion again providesa simple test problem.3.2 Lennard-Jones FluidsCareful description of argon simulations are given in [52] and [58]; we sum-marize these here. Chapter 4 of Frenkel and Smit [57] includes detailed al-gorithms for simulating a Lennard-Jones system and analyzing the resultingtrajectory.The atoms of liquid argon are assumed to interact with a Lennard-Jonespotential (1.1). In reduced-unit computer simulation of the Lennard-Jones



Table 4. Potential energy parameters for a single water molecule. An arti�cialbond term is given for interaction between the two hydrogen atoms. Such a term isoften included in addition to the angle term. It also provides an equilibrium valuefor the H-H length if the constrained formalism is used.bondsO-H �b = 450:0 kcal/mol, beq = 0:957 �AH-H �b = 450:0 kcal/mol, beq = 1:514 �AangleH-O-H �� = 55:0 kcal/mol, �eq = 104:52�systems, the parameters �, � and m are set to 1. Table 3 can be used tointerpret the computed results in a manner which is physically meaningful forargon. An important advantage of the reduced unit system is that the samesimulation could be used to study a system other than argon, substitutingappropriate conversion parameters analogous to the last column of the table.The force on particle i due to a single interaction with particle j is givenby Fij = �� @V@rij @rij@xi � @V@rij @rij@yi � @V@rij @rij@zi �T (3.14)= �24  1r7ij!� 2 1r13ij !!�@rij@xi @rij@xi @rij@xi �T (3.15)= �24  1r8ij!� 2 1r14ij !!� (xi � xj) (yi � yj) (zi � zj) �T (3.16)= �24  1r8ij!� 2 1r14ij !! (ri � rj): (3.17)We have used reduced units in (3.14){(3.17). Thus the equations of motionfor a general Lennard-Jones uid are:_ri = vi (3.18)_vi = 24Xj 6=i ri � rjr2ij  2� 1rij �12 �� 1rij �6! : (3.19)The particles are placed in a cubic box, subdivided into q3 smaller cubes.Initially the particles are arranged according to the \face-centered cubic"(fcc) crystal structure appropriate for argon | an atom is placed at eachof the corners of a cube, plus an atom at the center of each cube face. Theresult is 4q3 atoms. The standard simulation involves a cubic box with edgesof length L = 10:229�, with 864 (4q3 with q = 6) atoms arranged as describedabove. L, � and q are chosen to achieve a physical density (1.37 g cm�3).



Periodic boundary conditions are imposed by the minimum image conventionin which an atom interacts with all others contained in a self-centered cubicbox with edges of length L=2. To set the initial temperature, velocities areassigned according to a Gaussian (normal) distribution with mean 0 andstandard deviationpkBT=m in each component. Trajectories can be assessedby computing average quantities discussed in section 2.3.3.3 WaterLiquid water, due to its all-important biological role in aqueous solution, hasbeen the focus of considerable attention in molecular simulation for 30 years[60,61]. At the heart of molecular dynamics water calculations is the e�ectivepair potential [62] between water molecules. There are a number of modelsfor molecular interactions in water. The simplest models, such as the 3-atommolecule \simple point charge" (SPC) model [63] and TIP3Pmodel [62], treatthe oxygen and the two hydrogen atoms as locations of electrostatic charge,with coulombic interaction VC as in table 1. Alternatively, four-site modelssuch as TIP4P [62] move the charge from the oxygen towards the hydrogensalong the bisector of the H-O-H angle. Five-site models such as ST2 [64] andTIP5P [65] have charges on the oxygen, the two hydrogens, plus two isolatedsites located so that the hydrogens and the 2 additional charge sites form aregular tetrahedron centered around the oxygen atom. The various modelsmentioned here are illustrated in Fig. 3 and compared in [62,65].
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There is theoretical evidence that the central H-O-H bond angle remainsunchanged in both ice and liquid water. Accordingly, in many water modelsthe internal degrees of freedom (the O-H stretches and the H-O-H bend)are maintained rigidly with internal coordinates [26] or through Cartesiancoordinates with constraints [27], or restrained near equilibrium values withharmonic potential terms on the bonds and angle [66]. In the rigid modelsdescribed here, Lennard-Jones interactions between a pair of water moleculesare included only for the oxygen atomsThere is some interest in exible water models, in which the O-H stretchand H-O-H angle are modeled by harmonic potentials as in section 3.1. Inaddition, the Lennard-Jones interactions are often included for H-H and O-Hpairs, and some models include polarizability through variable charges [67,68].Two exible models based on SPC are described in [66,69].Once a particular water model is adopted, the practical di�culty arisesthat the Coulombic interaction, unlike Lennard-Jones, is signi�cant even atlarge separations rij . Force cuto�s, usually 8{9 �A, were used in the parametriza-tion many of the models mentioned here. In a bu�er region near the cuto�distance, the force (or potential, see below) is smoothly switched to zero bya switching function such as (3.21). There is evidence that cuto�s can causeundesirable artifacts [70,71]. A review of this issue is found in [72]. For thisreason attention has turned to the development of summation schemes, suchas fast multipole [1,73{75] and Ewald summation [76{78], for faster evalua-tion of electrostatic energies and forces without distance cuto�s. It is oftenthe case that fast summation methods enjoy computational speedups, ascompared to direction summation, only for su�ciently large systems. Largeperiodic water systems were used for testing fast electrostatic methods in[78] and are available electronically. Non-periodic water systems for testingtimestepping methods are described in [59,79].New summation techniques are generally compared, in terms of accu-racy and speedup, with existing methods based on single force and/or energycalculations for a given model system. This limited testing is sometimes in-su�cient to predict the behavior of the new methods in molecular dynamicsapplications. For example, it has been demonstrated that insu�cient accuracyleads to loss of smoothness in the forces from timestep to timestep, causinginstabilities in high-performance molecular dynamics timestepping schemeswith fast multipole evaluation of electrostatics [80,81]. It is preferable there-fore to compare force evaluation methods in broader contexts. To verify thebehavior of novel electrostatic treatments, energy stability throughout a dy-namics simulation should be con�rmed. As another measure of correctnessfor force evaluation methods, the short-range structure of liquid water can beascertained as with the liquid argon simulation described earlier, by calcula-tion of the radial distribution function (see table 2). For water, there are threesuch functions: gOO, gOH and gHH , corresponding to oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen distances, respectively, between pairs ofmolecules. These quantities are calculated as time averages of the radial



distribution function over trajectories resulting from molecular dynamics orMonte Carlo simulations. Computed radial distribution functions are oftencompared with experimental results from x-ray and neutron refraction datagiven in tabular form in [82].The choice of water model is based on a variety of factors related to theagreement of the computed results with experiment. The choice can have im-portant practical implications for molecular dynamics simulations. The �ve-site models clearly require more computation for evaluating the electrostaticforces than the three-site models. If a exible model is chosen, the additionalhigh-frequency terms in the potential necessitate a smaller timestep (typi-cally 0.5{1.0 fs) to assure the stability of the time discretization method.Time steps of 2-4 fs are common for rigid water models. An alternative torigid water has been recently introduced which maintains the elasticity ofexible water molecules while removing the high frequency modes [83]. Inaddition, the presence of the O-H bond terms can produce instabilities inadvanced timestepping algorithms, which we discuss next.A system with long and short range forces. Since the Coulombic inter-actions are signi�cant at large separations, systems of water molecules havebeen used as test systems for force-splitting numerical integration schemes[84,85]. The force is decomposed into fast and slow components using aswitching function S(r),F = Ffast + Fslow = �S(r)rV � (1� S(r))rV; (3.20)where S(r) =8<:1; r < rc � �1 +R2(2R� 3); rc � � � r � rc0; rc < r (3.21)with R = (r� (rc��))=�. Here rc is the cuto� distance beyond which forcesare considered slow, and � is a \healing length" over which the switchingfunction S smoothly varies between one and zero. The form of the switchingfunction is somewhat arbitrary, though su�cient smoothness is required.In multiple timestep (MTS) time discretization methods the short rangeforces, which can change rapidly in time, are updated frequently and includedin the numerical dynamics with small timesteps. The long range forces aretreated with larger steps in time, appropriate to the timescale on which theyvary signi�cantly. MTS methods have been developed which share the ab-stract geometric properties (and also favorable energy conservation) with theVerlet method [84,86].For solvated systems, fast summation methods have been successfullycombined with multiple timestep integration methods [87,88]. Variations ofthe method given in (3.20) include employing switching functions such as



(3.21) to intermolecular (water-water) distances rather than interatomic dis-tances or using switching functions to split the potential, rather than theforce. Procacci and Berne point out that these schemes can result in stableintegration methods, however the force-splitting formulation results in an al-tered Hamiltonian H = T + V �, where �rV � = Ffast + Fslow, during thepropagation of the fast motion [89].In exible water models, the fast forces include the O-H bond and H-O-Hangle terms. In multiple timestep methods, these forces are treated with anappropriately short timestep (0.5 fs), while the long-range nonbonded forcescan, in principle, be updated at much longer intervals. It has become clearover the last several years, however, that to assure stability of the integrationmethod the long timestep in MTS methods cannot exceed 5 fs. The 5 fs bar-rier is understood to be a resonance artifact coinciding with the half-periodof bonds such as O-H. Impulses introduced into the dynamics at each largestep excite the bonds and lead to catastrophic energy growth. A number ofmethods have been proposed to overcome the MTS timestep barrier, includ-ing averaging methods [59] which allow timesteps of up to 6 fs for exiblewater, and nonconservative MTS methods [79] which are less susceptible toresonance at timesteps up to 48 fs for exible water, but require stabiliza-tion by the addition of substantial stochastic noise and dissipation throughLangevin dynamics.3.4 Larger molecular modelsWe have focused to this point on systems of molecular uids. The challengesposed by exible water, with both local (bond and angle) and long rangeforces, are present to a much greater degree in exible molecules like pro-teins. An important goal of molecular modeling is to provide insight intoquestions of protein structure and function. Proteins are characterized bytheir linear sequence of amino acid residues (primary structure). Cooper-ative arrangements between groups of residues (secondary structure) suchas alpha helices and beta sheets, together with higher level organization ofsecondary structures, lead to a multitude of folded conformations (tertiarystructure). It has long been appreciated that tertiary structure is vitally im-portant in determining the biological activity of proteins. In the so-calledprotein folding problem, correct predictions of tertiary structure are soughtbased on primary structure.With 10-20 atoms per residue, detailed molecular dynamics models ofproteins can contain thousands of atoms. In addition, realistic models of bi-ological systems must include solvent, which can add many thousands ofatoms. Systems of this size limit the feasible length of computed trajectoriesto perhaps a few nanoseconds. Recent work has sought to address the compu-tational burden of solvent by development of implicit solvent models [90,91].Algorithmic advances in protein folding could have tremendous impact onour understanding of life itself. Here the need for test systems is especially



clear. In this section we present several simple polymer models. They are suit-able tests for sampling and global optimization because they possess manydistinct low-energy structures and are easily scalable over a large range ofsystem sizes.Butane molecule The consideration of exible molecules leads to an addi-tional type of potential energy term which comes from the dihedral degreesof freedom. The associated dihedral angles are best understood for a fouratom molecular system such as butane in united atom presentation CH3-CH2-CH2-CH3. In the united atom approach, a heavy atom and attachedhydrogens can be modeled as a single particle with additional mass: CH3 andCH2 are particles of mass 15 and 14, respectively. Let us denote the sequenceof four particle positions by ri, i = 1; 2; 3; 4. Then each pair of distance vec-tors (r12; r32) and (r32; r34) spans a plane and the angle between these twoplanes is called the dihedral angle �, shown in Fig. 4 and table 1. Let us give

Fig. 4. The butane molecule with carbon atoms represented by large dark spheresand hydrogen by small light spheres. The image was rendered using MolScript [92].a precise mathematical de�nition. We introduce the two vectorsm = r12 � r32 and n = r32 � r34: (3.22)Then the classical de�nition of the dihedral angle is given by� := sign (n � r12) arccos � m � njjmjj jjnjj� : (3.23)In analogy to our discussion of LJ systems, the dihedral potential in table 1 isgiven in the internal coordinate �, and the Cartesian force vector is obtainedby di�erentiating the potential with respect to the Cartesian coordinates by



the chain rule. It is possible to derive the following elegant formulas for theforces associated with a dihedral potential energy term Vd(�) [93{95]:F1 = �dV (�)d� r32 mjjmjj ;F4 = +dV (�)d� r32 njjnjj ;F2 = �F1 + r12 � r32r232 F1 � r34 � r32r232 F4;F3 = �F4 � r12 � r32r232 F1 + r34 � r32r232 F4:An interesting test case is the simulation of butane gas in a setting similar toargon. See Schlick et al [96]. The CHARMM (version 19) united atom force�eld parameter values for butane are given in table 5.Table 5. A suitable set of united atom parameters for butane. (From CHARMM.)bondsCH2-CH2 �b = 225:0 kcal/mol, beq = 1:52 �ACH2-CH3 �b = 225:0 kcal/mol, beq = 1:54 �AanglesCH3-CH2-CH2 �� = 45:0 kcal/mol, �eq = 110:0�dihedralsCH3-CH2-CH2-CH3 �� = 1:6 kcal/mol, �eq = 0:0�, n� = 3Lennard-JonesCH2 � = 0:1142 kcal/mol, � = 2:235 �ACH3 � = 0:1811 kcal/mol, � = 2:165 �A
A small exible molecule A frequently-used test problem in moleculardynamics simulation is the so-called alanine dipeptide (more properly N-Acetylalanyl-N'-Methylamide) [32,47,97,98]. Small in size (22 atoms), alaninedipeptide is a good model system because it exhibits conformational exibil-ity in the 2-dimensional � �  dihedral space. The dihedral angles � and  are illustrated in Fig. 5. The changes in structure seen through the dynamicsof the backbone dihedral angles make alanine dipeptide an attractive pro-totype for understanding the structure of folding proteins. Figure 6 showsthree distinct conformations at major minima: C5: � � �180�,  � 180�;C7 equatorial: � � �120�,  � 60�; and C7 axial: � � 60�,  � �60�. Theexact location of the minima varies with the choice of potential function. ARamachandran plot, which gives the conformational energy distribution as a



function of the two dihedral angles is given in Fig. 7. The energies were cal-culated by restraining the dihedral angles at 10� increments and minimizingall other degrees of freedom (no other constraints were imposed). The pro-cess is described in [47]. Alanine dipeptide parameters from the CHARMMpotential are provided on the web site http://www.mmc.le.ac.uk/mdt.In many molecules (including peptides and nucleic acids), certain arrange-ments of four or more atoms along the peptide backbone have a naturallyplanar equilibrium arrangement | the so-called improper torsion angles. Forthese, deformations from planarity may be described with quadratic potentialenergy terms in the dihedral angles relating sets of four atoms (Vi in table 1).In alanine dipeptide, the left and right \arms", shown by shaded polygonsin Fig. 5, are each formed by six atoms in a plane. In the left arm (darkerrectangle) the planar con�guration is maintained by two improper torsions,CH3-C-O-N and C-N-H-CH and a dihedral angle CH3-C-N-CH. Similarlythe right arm is maintained in a plane by improper torsion angle terms forCH-C-O-N and CH3-N-H-C and the dihedral angle CH-C-N-CH3.
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Fig. 6. Alanine Dipeptide in three conformations. From left: C7 equatorial, C5 andC7 axial. The images were rendered using MolScript [92].
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Fig. 7. Ramachandran plot for alanine dipeptide | potential energy as a functionof the two dihedral angles � and  indicated in Fig. 5. Energy contours are labeledin units of kcal/mol.



total energy, individual components of potential energy (especially bond en-ergy, where MTS resonance artifacts are �rst observed), and mean squaredisplacements from the starting structure (see table 2). The backbone dihe-dral angles � and  provide a compact way to monitor sampling of confor-mation space [98] and transitions between conformations [47]. The regions ofconformational space available for a particular MD potential function can beascertained from a calculation like the one used to produce the Ramachan-dran plot in Fig. 7.\Minimal models" for proteins. Grubm�uller and Tavan [99] have pro-posed a simpli�ed protein model consisting of a chain of 100 identical par-ticles. They use the same CH2 united atom model and parameters given forbutane in section 3.4 (see table 5).The potential energy used in this model is a subset of the CHARMMpotential (1.4), including bonds, angles, Lennard-Jones and electrostatics.The CH2 parameters are given in Table 6. In order to impose a heteroge-Table 6. Suitable parameters for the minimal protein model potential.bonds �b = 225:0 kcal/mol, beq = 1:52 �Aangles �� = 45:0 kcal/mol, �eq = 110:0�Lennard-Jones � = 0:1142 kcal/mol, � = 4:470 �ACoulomb qn = 12 cos(n=8)eneous primary structure, the model is divided into �ve electrostatic regions,three positive and two negative, by assignment of partial charges given ap-proximately by qn = 12 cos(n=8)e where n is the index of a carbon atom,numbered from the end of the chain, as shown in Fig. 8, and e is the unitelectrostatic charge.Molecular dynamics simulations of this model exhibit large-scale confor-mational changes between distinct tertiary structures. Con�gurational inter-conversions occur on an accelerated timescale, compared with detailed proteinmodels [99].Inter-particle distance between neighbors along the chain is maintainednear equilibrium with a harmonic bond potential, necessitating a small timestepof 1 fs, as in traditional molecular dynamics simulations applied to detailedmodels. A larger integration timestep could be used if rigid constraints wereto be imposed on the bond lengths, most likely without substantive e�ect onthe overall dynamics. A similar particle chain has been proposed by Honey-cutt and Thirumalai [100] to mimic a protein with 46 amino acids. These are
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