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Abstract. In this study, the forces acting on a baseball pitch (gravity, air drag, and
Magnus force) are considered. A numerical procedure is developed using Newton’s
2nd Law on four different pitches; a fastball, curveball, slider, and screwball. Using a
4th order Runge Kutta numerical integration technique, trajectories are obtained for
the different situations. The results agree very well with what one would intuitively
expect and demonstrate that simple physical models can often be very effective.
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1. Introduction

Baseball is the favorite summer pastime in many countries, but it is
also a sport embedded with deep principles in physics. In baseball, a
pitcher throws a small spherical object towards a batter who attempts
to hit this ball with a block of wood. The ball is subject to various
forces as it travels through the air and it is governed by Newton’s laws
of motion. Then a violent and short collision takes place between the
bat and the ball with huge amounts of energy dissipation depending
on the impact location. Finally, the ball flies off of the bat and through
the air.

This paper focuses on modeling four different common pitches in
baseball: the fastball, curveball, slider (like a curveball but it drops
more), and screwball (like a curveball but spins and curves in opposite
direction). A simple theoretical model based on Newton’s 2nd Law was
used.

2. Theory

As a baseball travels through the air, it is acted on by three dominant
forces: gravity, air drag, and the Magnus force. Gravity is the most
straightforward of the three forces; if we define the positive z direction
to be upwards, then the force due to gravity on the ball at any point
on its trajectory is simply

Fg = −mg ẑ (1)
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Figure 1. A pictorial representation of the origin of the Magnus force. The diagram
shows a view of the ball from above (so gravity is acting into the page). Due to the
rotation, the velocity on the right side of the baseball is greater than the velocity
on the left side, resulting in a net force to the left.

In this equation, m is the mass of the ball and g is the acceleration due
to gravity.

One may think that the drag force on a baseball can be expressed
by simply using Prandtl’s relationship, and to first order, that is a
good approximation. Wind tunnel measurements, however, have shown
that the so-called drag coefficient is a strong function of velocity and
surface type for baseballs. As the velocity of a baseball increases and
the air flow around the baseball switches from laminar to turbulent,
the drag coefficient drops and the baseball slips more easily through
the air. This transition regime occurs at a very high velocity for smooth
baseballs, but it turns out that it is at a much lower velocity for rough
baseballs. This counterintuitive observation states that a rough baseball
will experience less drag than a smooth one.

An empirical formula giving the drag force on a baseball of velocity
v has been developed by Giordano (1997).

Fd = mf(v)v v (2)

where v is the translational velocity of the baseball and the function
f(v) is given by

f(v) = 0.0039 +
0.0058

1 + exp [(v − vd) /∆]
(3)
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Figure 2. Definition of the angle φ for expressing the angular velocity vector

In Equation 3, the quantities vd and ∆ are empirical constants and
have values of 35 m/s and 5m/s respectively.

The drag force explains why the baseball slows down as it approaches
home plate, but it does not explain why certain pitches curve horizon-
tally during flight. This curvature occurs due to a phenomenon called
the Magnus force which originates due to the spinning of the baseball.
Assume that the ball is spinning about an axis perpendicular to its
direction of motion (this is almost always the case). The velocity at any
point on the ball will have two components because the center of mass
of the ball is moving and the entire ball is spinning. This causes the
velocity vector to be different at different points on the ball; in other
words, some parts of the ball are moving faster than others. This is
illustrated in Figure 1 where, in the diagram, the ball is moving upwards
and rotating counterclockwise. In this case, the velocity is greatest on
the rightmost edge and lowest on the leftmost edge. Since drag force
increases with velocity and we have a velocity gradient throughout
the ball, this means that the drag force will also have a horizontal
component. The velocity is highest on the rightmost edge of the ball,
so there will be a net drag force pointing to the left. This is the so-called
Magnus force, Fm, which is the dominant spin-related force acting on
a baseball. Recall that the Magnus force is really just a special case of
the aerodynamic drag force.

It turns out that the Magnus force can be written as the following
cross product,

Fm = S(v) ω × v (4)

where ω is the angular velocity vector and S(v) is some unknown
function of velocity. Adair (1990) suggests that for a typical baseball
pitch, S can be somewhat well approximated by

S =
(
4.1× 10−4

)
m (5)
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Table I. The parameters corresponding to each
modeled baseball pitch. Note that v0 is the initial
velocity, ω is the angular velocity, θ is the eleva-
tion angle, and φ is the angular orientation (see
Figure 2 for more information on φ)

Pitch v0 (mph) ω (rpm) θ(◦) φ(◦)

Fastball 95 1800 1 225

Curveball 85 1800 1 45

Slider 85 1800 1 0

Screwball 85 1800 1 135

3. Computational Model

Allow us to choose a coordinate system where x represents displacement
from the pitcher to the hitter, y represents movement from side to side
(the ball would move to the pitcher’s left if it moves in the +y direction),
and z represents vertical motion. The three dominant forces acting on
a baseball are the force of gravity Fg (Equation 1), the drag force Fd

(Equation 2), and the Magnus force Fm (Equation 4). We define the
angular velocity vector as ω = ω (0, sinφ, cos φ) where φ represents the
angle between the z-axis and the baseball’s angular velocity vector (see
Figure 2). In addition, we give the velocity vector a general definition of
v = (vx, vy, vz). This allows to expand Equation 4 using the definition
of the cross product.

Fm = S(v) ω × v
= mBω [(vzsinφ− vycos φ) x̂ + vxcos φ ŷ − vxsinφ ẑ] (6)

Recalling that the velocity is the time derivative of displacement,
acceleration is the time derivative of velocity, and F = ma, the equa-
tions of motion of a baseball thrown by a pitcher can be described
using the following six coupled ordinary differential equations. Note
that Equations 1, 2, and 4 have been used to obtain these equations.

dx

dt
= vx (7)

dy

dt
= vy (8)

dz

dt
= vz (9)
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Figure 3. Numerical solution for the trajectory of a fastball delivered by a
right-handed pitcher. The fastball parameters are given in Table I.

dvx

dt
= −f(v) vvx + Bω (vzsinφ− vycos φ) (10)

dvy

dt
= −f(v) vvy + Bωvxcos φ (11)

dvz

dt
= −f(v) vvz + Bωvxsinφ (12)

The boundary conditions applied within the model were:

x (t = 0) = 0 (13)
y (t = 0) = 0 (14)
z (t = 0) = 0 (15)
vx (t = 0) = v0 cos θ (16)
vy (t = 0) = 0 (17)
vz (t = 0) = v0 sin θ (18)

In these equations, v0 is the initial speed of the pitch and θ is the angle
of elevation.

The above differential equations were numerically solved using a
4th order Runge Kutta technique with a fixed stepsize t = 10−4 s
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Figure 4. Numerical solution for the trajectory of a curveball delivered by a
right-handed pitcher. The curveball parameters are given in Table I.

(chosen to optimize efficiency and accuray). The precise details of the
implementation have been omitted since 4th order Runge Kutta is a
common, perhaps the most common, method for solving a system of
coupled differential equations.

4. Results

Four of the most common pitches in baseball were modeled in this
study: a fastball, curveball, slider, and screwball. The values for the
various parameters for each pitch are given in Table I. Graphs repre-
senting vertical and horizontal position versus displacement from the
pitcher’s hand have been plotted for each case in Figures 3 (fastball),
4 (curveball), 5 (slider), and 6 (screwball).

The simulation of a fastball (Figure 3) shows that the vertical po-
sition only decreased by only around 1.5 feet during the trajectory
and the horizontal position changed only by around 0.5 feet. This is
expected, however, since the fastball has a lot of backspin and the Mag-
nus force would tend to counteract its downward force due to gravity.
Pitchers will often throw a rising fastball, one with a lot of spin, and
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Figure 5. Numerical solution for the trajectory of a slider delivered by a
right-handed pitcher. The slider parameters are given in Table I.

hitters often claim that the ball actually rises as it approaches them.
This is an optical illusion, but it is interesting that the baseball does
not drop more as it approaches the plate. The fastball required 0.46 s
to reach the plate and had a final velocity of 86 mph.

The curveball and slider (Figures 4 and 5) exhibited very similar
features. Due to the Magnus force they both curved to the left (if
thrown by a right-handed pitcher) from the pitcher’s point of view, by
similar amounts (around a .33 ft) and they both dropped significantly
during flight. As expected by the ball’s rotation, the curveball was lower
than the slider by around a 0.25 ft by the time it reached the hitter,
making it a very difficult pitch to hit. The entire flight for both the
curveball and slider was only 0.52 s in duration and each pitch was
moving at 76 mph when it reached the plate.

It is clear from experience in hitting that it is more difficult to hit
a pitch that curves towards you than one that curves away from you.
That is the idea behind the final modeled pitch; a screwball is virtually
identical to a curveball except for the fact that it spins in the opposite
direction. This causes it to curve to the right (as viewed and thrown
by a right handed pitcher) by around the same amount as a curveball.
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Figure 6. Numerical solution for the trajectory of a screwball delivered by a
right-handed pitcher. The screwball parameters are given in Table I.

Like the curveball and slider, the screwball reached home plate after
0.52 s and was traveling at 76 mph.

Note that the z component of each pitch increases slightly before
decreasing. This is due to the 1◦ elevation angle on all pitches; there is
a small but non-zero z component of the velocity which causes the ball
to slightly increase before gravity dominates the vertical motion.

5. Discussion

The key result of the study is that baseball pitches can be modeled ex-
tremely well using only basic physics principles and a simple numerical
integrator. We have shown that fastballs do not dip or move a lot but
they depend on their speed for their success; on the contrary, we have
shown that curveballs, sliders, and screwballs are good pitches because
of their movement and not their speed.

Possible improvements on the model would be to obtain better
empirical estimates for f(v) (Equation 3) and B (Equation 5). A theo-
retical calculation of the drag force based on the equations of fluid flow
would also be useful to compare with the empirical observations.

physics_baseball.tex; 7/04/2005; 8:40; p.8



Numerical Modeling of Baseball Pitching 9

Future projects include extending the model to various limiting
cases; practical scenarios could be examined, such as the case where
the angular velocity of the ball becomes very high (this can be achieved
through pitching machines) or when the mass becomes very heavy (a
waterlogged baseball).
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