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Temperature Models for Ware Hall 
J. K. Denny and C. A. Yackel 

Jeff Denny (denny_jk@mercer.edu) is an Assistant 
Professor of Mathematics at Mercer University whose 
graduate research focused on mathematical biophysics 
and protein structure determination. He is currently 
interested in mathematical modeling and issues in teaching 
mathematics. Outside of Ware Hall, he enjoys relaxing with 
his family and observing new situations to model. 

Carolyn Yackel (yackel_ca@mercer.edu) is an Assistant 
Professor of Mathematics at Mercer University. Her formal 
training is as a commutative algebraist. As her office grew 
colder and colder, she found this topic more and more 
compelling. She encourages mathematicians who wouldn't 
normally look twice at a differential equations article to 
work through this one. "It's very cool," she says. (No pun 
intended.) 

Introduction 
In August, our mathematics department moved into the former music building, Ware 
Hall. The university renovated the old choir rehearsal hall to form four faculty of- 
fices and one computer lab, as in Figure 1. The temperature of all of these rooms is 
controlled by a single thermostat, which the renovation enclosed in a faculty office. 

Office Office 

Lab Office 

Office 

Figure 1. The renovated choir rehearsal hall now holds four faculty offices and one computer 
lab. 
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With this system, our students literally sweat out their calculus labs as we sit in our 
arctic offices, teeth chattering. In this paper we use elementary differential equations 
to investigate the temperature issues associated with our heating, ventilation, and air 

conditioning (HVAC) unit, beginning with a straightforward and idealized model and 

moving to more complicated, realistic models. 

Model 1: Newton's law of heating and cooling 
A number of factors affect the temperature in our computer lab: the outdoor temper- 
ature, the volume of output of the HVAC unit, the temperature of the air circulated 

by the HVAC unit, the size of the lab room, the number of people in the room, and 
the number of computers running in the room. We begin by focusing only on the first 
factor-the outdoor temperature. Ignoring all other sources of hot or cold air, we may 
treat the change in lab temperature due to outdoor temperature as a Newton's Law 
of Heating and Cooling problem. That law states that the rate of change of the tem- 
perature of an object is directly proportional to the difference between the object's 
temperature and the temperature of the surrounding medium. That is, 

dT 
= k (Ta - T), (1) dt 

where Ta is the outdoor, ambient temperature, and T is the temperature of the object, 
which is the air in the lab room. This model assumes that the constant k will account 
for the insulation surrounding the room and the insulation of the windows and that all 
doors and windows in the room are closed. We solve this differential equation using 
separation of variables to obtain 

T(t) = Ta+ (To - Ta) e-kt, (2) 

where To is the initial temperature of the room. As can be seen in both Equations (1) 
and (2), equilibrium occurs when the initial temperature and the ambient temperature 
are the same. The graph in Figure 2 shows that, when To > To or To < Ta, the solution 

approaches Ta exponentially as time increases. Note that this model treats To as a 
constant, even though outdoor temperature typically varies over the course of the day. 
This assumption can be eliminated by replacing Ta in (1) with a function of t that fits 
data for outdoor temperature changes, as done in [3]. 

To> Ta 

To< Ta 

Figure 2. When To > Ta or To < Ta, the solution approaches Ta exponentially as time 
increases. 
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Model 2: A mixing problem 
To have the air temperature of an office or computer lab approach the outdoor temper- 
ature is quite undesirable during the blistering heat of a Georgia summer. Of course, in 
the summer, we turn on the HVAC system, which has a thermostat inside the lab room 
and keeps the temperature within ?w degrees Fahrenheit of a set temperature T,. The 
HVAC system runs when the temperature is at or above Ts + w until the air tempera- 
ture in the room reaches Ts - w. Likewise, the system is off when the temperature is at 
or below Ts - w until the air temperature reaches Ts + w. Thus, the room temperature 
stays between T, - w and Ts + w, and the HVAC system does not continually switch 
on and off in an attempt to maintain a single, constant room temperature. 

We now extend our first model to describe the interplay of the warming from out- 
doors with the cooling produced by the air-conditioned air when the HVAC system is 
on. The new differential equation is 

dT r 
dt= k (Ta - T) + (Thvac - T), (3) 

dt v 

where Thvac is the temperature of cooled air pumped out by the HVAC system, r is the 
rate (in liters per minute) at which the air is pumped out, and V is the volume of the lab. 
The first summand comes from Newton's Law of Heating and Cooling and describes 
the effect of the warm outdoors. The second summand comes from considering room 
temperature as concentration (for example, as proportional to calories per liter) and 
writing the differential equation for a mixing problem. We have assumed that the rate 
at which cool air enters the room is the same as the rate at which air leaves the room 
and that the air in the room remains completely mixed. This model comes from the 
standard mixing problems taught in elementary differential equations courses [1, 5]. 

By rewriting equation (3) as 

dT (k ) VkTa + rThvac 
- 

T)(4) 
dt V Vk +r 

we see that the equilibrium temperature that produces 
-d 

= 0 is 

V VkTa + rThvac T Vk (5) 
Vk +r 

We call this value mkrv. Given any starting temperature, the air condition system will 
cause the room temperature to approach mkrv degrees. 

Example 1. Measurements show that the lab room has volume 204,000 L, and the 
physical plant reports that the HVAC unit is designed to pump air into the lab at a rate 
of 26,000 L/min. To simulate summer conditions in Georgia, let k = .0248/minute, 
outdoor temperature Ta = 90'F, initial temperature To = 78TF, HVAC air temperature 
Thvac = 600F, and set temperature Ts = 70'F with w = 30F. The differential equation 
is 

dT 
- = 0.1523 (64.89 - T). dt 

The graph in Figure 3 shows an asymptote at the equilibrium temperature of T = 
mkrv = 64.890F.E 
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Figure 3. Using the parameters for Example 1, the solution approaches mkrv = 64.89'F ex- 
ponentially as time increases. 

Separation of variables yields a solution to Equation (4). When the HVAC system 
is on, the room temperature is decreasing 

(d- 
< 0), and the model equation is 

T(t) = mkrV + (To - mkrv) e-(k+)t. (6) 

When the HVAC is on (d < 0 and T > 
Ts 

- w), one important consideration is 
whether the temperature in the room will ever reach Ts - w so that the HVAC will 
turn off. In order to reach this switch-off temperature, Thvac must be small enough 
to ensure that the equilibrium point for equation (4) is below T, - w; otherwise, the 
temperature will approach the switch-off temperature but never reach it, as in Figure 3. 
This requires that 

VkTa + rThvac 
mkrv < Ts - w, Vk +r 

and so the HVAC must output air whose temperature is 

Vk 
Thvac<(Ts - w)- (Ta -(Ts -w)). p, 

The expression shows Thvac must be less than the lower set temperature, Ts - w, minus 
a value proportional to the difference between the outdoor temperature and Ts - w. 
For Example 1, Thvac must be less than 62.52'F, which is significantly lower than the 
desired temperature range of 700 ? 30F.E This explains why the air blowing out of air 
conditioning systems needs to be significantly cooler than the desired room tempera- 
ture and why you often need a sweater when sitting in front of an air conditioning duct 
in the summer! 

Another consideration is how long the air conditioning system must run to cool the 
room to Ts - w and how long the room will take to warm up to Ts + w when the air 
conditioning is off. When the air conditioning is on, the room temperature is described 
by Equation (6). Finding the time necessary to cool the room from Ts + w to Ts - w 
can be accomplished by first setting To = Ts + w so that t = 0 corresponds to the air 
conditioner kicking on. Then set the equation equal to Ts - w, and solve for t to find 
the cooling time as 

tcool = In. 
Vk + r T + w - mkrv 
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Similarly, from equation (2), the time needed for the room to warm up to ts + w is 

1 

i(Ts +wTa\ 
(8) 

twarm= - Ink T, . (wT8) k Ts - w - Ta 

For Example 1, tcoo = 8.84 minutes and twarm = 12.19 minutes. These calculations 
emphasize that, after the temperature reaches the range Ts - w to T, + w, the solution 
is periodic. The increasing intervals correspond to a piece of the graph from Figure 2, 
because the only temperature change during these times is due to Newton's Law of 
Heating and Cooling. The decreasing portions are described by Equation (3) and cor- 
respond to a piece of Figure 3. 

The models in Equations (1) and (4) can now be combined to form a single differ- 
ential equation that describes the temperature of the lab room with an HVAC system. 
By using a step function that only takes on the values 0 and 1 to turn the mixing term 
in the differential equation on and off, we can simulate the feedback thermostat that 
turns the HVAC system on and off. This behavior of the thermostat is slightly tricky 
to model with an equation, since the term describing the effect of the air conditioning 
must be off if the room temperature is increasing and below T, + w but on if the room 
temperature is decreasing and above T, - w. The sign of !- denoted sgn(dT), plays 
an important role. Since step functions switch on or off at only one temperature, we 
use the following modification to switch at both T, - w and T, + w: 

step(T)= 1, if T > T,+ sgn()- w 
step (T) =0, otherwise 

If the temperature of the room is rising (d > 0), the step function will switch on 
(step(T) = 1) when the room temperature reaches Ts + w. However, if the room tem- 
perature is falling (dir < 0), the step function will switch off (step(T) = 0) at the 
temperature T, - w. 

Using the step function above, the model differential equation for our lab room with 
an HVAC system is 

dT r dT = k (T -T) + step(T) -r (Thvac - T). (9) dt V 

Writing an analytic solution for this equation is ungainly due to the switching of the 
thermostat. First, let t1 be the time necessary to reach the end of the first cooling cycle. 
Then, combine the results from our two previous models to define a function, t, for 
times between 0 and twarm + tcool minutes so that heating occurs for the first twarm min- 
utes and cooling occurs for the next tcool minutes. 

mkr + (T + w - kr) e-(k+) (t-twarm) if t > 
twarm 

Ta + (T - w - Ta) e-kt, if t < twarm 

An analytic solution consists of first using Equations (2) and (6) as necessary until 
time t1 is reached. Then, to produce the periodicity seen in air conditioning perfor- 
mance, use 

T(t) = T((t - tl) mod(twarm + tcool)) 

for t > tl, where (t - tl) mod(twarm + t,,cool) is the remainder of (t - tl) divided by 
(twarm + tcool). 
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Figure 4. The temperature of an ideal room with an HVAC unit installed, as in Example 1. 
The time required to cool the room from 73'F to 670F is t,,,cool = 8.84 minutes, and the time 
necessary for the room to warm up from 67?F to 730F is twarm = 12.19 minutes. 

Model 3: Two rooms 
The university's updates to Ware Hall resulted in the single HVAC thermostat being 
located in a small faculty office. This office cooled relatively quickly, since there was 
usually only one faculty member in the office, only one computer in the office, and 
only one window. The computer lab across the hall, however, regularly held twenty 
students, ten computers, and one professor. Needless to say, when the HVAC unit had 
cooled the faculty office adequately, the temperature in the lab was still stifling. 

While teaching in the hot lab, our interests quickly turned to modelling the tem- 
peratures in the lab and the faculty office. This model is a system of two differential 
equations in which the HVAC control term in each is dependent on the temperature 
in the faculty office. For now, we disregard the people and computers in each room. 
Let F be the temperature of the faculty office, L be the temperature of the lab, and 

kl, k2, k3, k4 be constants. Ta and Thvac are defined as before. Moreover, k2 will be the 
quotient of the rate at which the HVAC unit pumps air into the office and the vol- 
ume of the office, and k4 will be similarly defined for the lab. Then, the office and lab 
temperatures are given by the system 

= ki (Ta - F) + k2 (Thvac - F) - step(x) 
dt (10) dL 

dt =k3 (Ta 
- 

L) + k4 (Thvac - 
L) -step(x), 

where X equals F if the thermostat is in the faculty office and X equals L if the ther- 
mostat is in the lab room. Notice that the equations are similar to the second model, 
except that whether or not the air conditioning is on in each room depends only on the 
temperature in the room containing the thermostat. In each case, the analytic solution 
for each room of the system is similar to that in the second model. 

Example 2. To model a lab room and faculty office, assume that the faculty office 
is approximately half the size of the lab and the lab has two air ducts. Based on our 
measurements, the faculty office is approximately half the size of the lab, implying 
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that the ratios k2 and k4 of air flow rate to volume for the lab and the office are the 
same. This gives the parameters kl = 0.0248, k2 = 0.1275, k3 = 0.0389, k4 = 0.1275 

per minute, ambient temperature Ta = 90'F, set temperature Ts = 70'F, HVAC air 

temperature Thvac = 600F, and w = 3?F. The solution curves for each room are shown 
in Figure 5. 

90 

85 

80 

75 

70 

65 

60 0 10 20 30 40 50 60 

Figure 5. This graph shows the temperatures in the faculty office and the computer lab based 
on the system (10) using the parameters of Example 2. The system of differential equations 
was solved using Euler's method with a step size of 0.05 minutes. The upper curve is the lab 
temperature while the lower curve is the office temperature. 

Even in Georgia, we need heat in the winter. The same problems caused by the 
air conditioning system persist when heating the building. In fact, the same models 
hold with the modification that the heat is on (step(T) = 1) when T < Ts + w and the 

temperature is increasing and that the heat is off (step(T) = 0) when T > Ts - w and 
the temperature is decreasing. This behavior amounts to reflecting our step function 
about T = T, + sgn(dT) - w and can be accomplished with the new step function 

1, 
if T < T + sgn( ) - w 

step(T)- , 
otherwise. d 

Model 4: Class is in session 
Finally, we create a more realistic model by modifying Equation (10) to include heat 
from people and computers and to reflect the workings of the HVAC unit in Ware 
Hall more accurately. The heat gain from one person performing desk work is 475 
BTU/hr, and the heat gain from one desktop computer is 1800 BTU/hr [4]. Using the 
lab volume along with the specific heat and density of air, these values give a temper- 
ature change of 0.0176?F/min for each person and 0.06680F/min for each computer 
in the lab. Since our offices are approximately half of the size of the lab, the temper- 
ature change in an office is 0.03520F/min for each person and 0.13660F/min for each 

computer. To account for 21 people in the lab and 10 computers, add 21(0.0176) + 
10(0.0668) = 1.03760F/min to the differential equation for the lab temperature. Simi- 

larly, add 0.17180F/min to the differential equation for the office temperature. 
To further improve our model, we include a modification of the air that is pumped 

into the rooms by the HVAC unit. The Physical Plant reports that the HVAC unit in 
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Ware Hall actually recirculates only 80% of the air that it draws out of a room. The 
other 20% is replaced with air taken from outdoors. There are two intake vents in 
the lab and one in each of the four faculty offices. Moreover, the cooling unit does 
not produce air that is at a constant temperature, but pumps out air that has been 
cooled by 18F.E Given this information, we replace Thvac in the cooling terms with 
0.8 (4F + 2L)/6 + 0.2 Ta - 18. 

The differential equation is now 

dF 4 1 7 dF 0.1718 + ki (Ta F) + k2 - L + -Ta - 18 - F step(F) dt 15 5 15 
dL 8 1 11 

-- 1.0376 + k3 (Ta - L) + k4 -F + ITa - 18 - - L step(F) 
dt 15 5 15) 

Its solution is plotted in Figure 6 using the parameters of Example 2. 

100- 

90 
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Figure 6. The solution for model 4 is depicted with the upper curve corresponding to the lab 
temperature and the lower curve corresponding to the office temperature. 

Final remarks 
The four models presented in this paper give rise to several teaching ideas for use 
in calculus and differential equations. For example, we have written and successfully 
used a calculus lab based on this paper. In the lab, students examine slope fields, find 
the general solution for Newton's Law of Heating and Cooling, calculate cooling and 

heating times for the lab and office, and explain why the room without the HVAC 
thermostat has temperature problems. The lab piqued the students' interest and imag- 
ination, particularly since they were sitting in the lab room in question. (The lab may 
be found at http://faculty.mercer.edu/dennyjk/calclab.pdf.) 

For differential equations, these models provide opportunities for student projects. 
Such assignments might include programming Euler's method, investigating slope 
fields for the models, using a function to model outdoor temperature changes dur- 

ing a typical day (see [4] for a set of temperature data), finding the optimum room 
size for a given number of computers and people, or collecting temperature data and 

determining kl and k3 using least squares fitting. 
Finally, the question remains: can we propose a solution for Ware Hall that will 

keep both the lab and faculty office comfortable? As a new option, we propose that 
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temperature sensors be placed both in the lab and the faculty office. The weighted 
sum T = w1F + wc2L with w1 + w02 = 1 would then be used to control the HVAC. 
Determining the weights w1, w2 that manage to keep the lab and faculty office most 
comfortable forms yet another project for a differential equations class. 

Acknowledgment. The authors thank Mr. Karl Reaves of the Mercer University Physical 
Plant for helpful conversations about HVAC systems. 
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Construction Without Words 

Here is another simple way to get the root mean square of a and b (see also 
Romero Mairquez in the March 2001 issue, p. 118): 

D 

C 
O 

A 

b B 

AO = BO= CO = DO= a2+ b2 

-Ruma Falk 
The Hebrew University of Jerusalem 
rfalk@cc.huji.ac.il 
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