
J. theor. Biol. (1979) 77, 513-522 

A Predator-Prey Viewpoint of a Single Species Population 
GEORGE G. Ross AND NORMAN A. SLADE 

Department of Computer Sciences, The City College, 138 Street and 
Convent Avenue, New York, N. Y. 10031, U.S.A. and Museum of Natural 

History, University of Kansas, Lawrence, Kansas 66045, U.S.A. 

(Received 22 July 1977, and in revisedform 5 October 1978) 

The growth of a single species mammalian population in an environment 
with unlimited food, water, and nesting materials is modeled. The model 
provides for crowding effects by considering the population divided into a 
“young” group and an “old” group, with menopausal age the dividing 
criterion. The old group is viewed as a predator on the young prey and the 
classical predator-prey coupled differential equation system is used as the 
basic mathematical description. It is modified by introducting an Allee effect 
in the predator death rate to account for an observed decrease in predator 
death rate as predator density rises. 

The five year history of an experimental colony of mice is used to evaluate 
five parameters of the model. The evaluated model exhibits excellent 
correspondence with its experimental data, in particular the instability which 
led to rapid growth and subsequent collapse of the experimental population. 
Each mathematical expression in the differential equation system is discussed 
in terms of its biological and/or social significance. The potential of 
considering non-linear interactions between age groups of a single species as 
a predator-prey effect is also discussed. 

1. Introduction 

In most studies of the growth of single species populations a mechanism for 
density dependence is incorporated to account variously for crowding effects, 
limited essential resource, carrying capacity of the environment, etc. A wide 
variety of deterministic and stochastic models have been based on such 
mechanisms. These models have been formulated using differential equations 
(Lotka, 1956), differential-delay (May et al., 1974), difference equations 
(May, 1972) and integral equations (Pielou, 1969). 

The early models were of two types: 

(1) Those which are amenable to analysis but ignored structural 
differences, such as age of organisms, between members of a population which 
are important in determining the dynamics of real populations; and 

(2) Age-structured models of the Leslie type (Leslie, 1945; Pielou, 1969) 
which incorporated age-specificity but were difficult to apply to populations in 
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which non-linear demographic parameters varied strongly with time or 
population density. Leslie (1948) extended his basic model to include a rather 
restrictive form ofdensity-dependence (Beddington, 1974) and Cooke & Leon 
(1976) have developed more general treatments of density effects for age- 
structured populations. Oster & Takahashi (1974) and Beddington & Free 
(1976) have explored the effects of age structure on models of trophic 
interaction. However, many populations. particularly of higher veterbrates. 
may be regulated by interactions between age classes of conspecifics. Calhoun 
(1973) has described the growth of such a laboratory population of house 
mice. The model discussed in this paper combines a differential equation 
model incorporating density-dependence with a first approximation of age 
structure. 

2. The Mouse Population 

The population chosen to test the model was the mouse colony ot’Calhoun 
(1973). Initially four pairs of approximately 30 day old Balb C strain house 
mice were introduced into a square enclosure 2.57 m on a side and 1.37 m 
high. Nest boxes, food hoppers and water bottles were fastened to the walls of 
the enclosure expanding the usable space beyond that of the floor. The 
compartmentalization of the pen into nesting areas, feeding areas etc.. was 
designed to create an optimal environment (in a fixed space) for the animal’s 
prosperity, corresponding to man’s best understanding of its social behavior. 
Details of the environment have been described by Calhoun (1973). The 
population was allowed to grow with minimal disturbance for 1590 days. 
During this time, the mice were supplied with ad lib food. water. and nest 
material and there were no observed diseases or predators (Calhoun, 1973). 
Each mouse was weighed and examined every 21 days for the first 400 days of 
the study and about every 40 days thereafter. Mortality of young mice 
associated with handling (Calhoun & Slade. in prep.) was probably the only 
departure from maximum reproduction and survival in this population. 
Because of the structure of the environment and surplus of resources, the only 
influences on population growth were socially related (Calhoun. 1973). 

The population grew rapidly at first but began to exhibit pathological 
symptoms as crowding increased. Among the observed symptoms were 
smothering of the young, inadequate weaning. and the diversion of male 
energies from the sexual to agonistic behavior concerned with territoriality. A 
severe decrease in copulation frequency was evident as the density of animals 
increased. Eventually mating stopped entirely, the birth rate vanished, and 
natural mortality began to reduce the population (dead animals were removed 
daily). When the population returned to a level that had been prosperous in 
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the initial phase of the experiment. the birth rate did not recover because most 
of the females were beyond the reproductive age. 

Calhoun (1973) has given a general description of the changes in mouse 
numbers through time. The population grew from 8 to over 2200 mice and 
then began to decrease at an accelerating rate. Our data differ from those of 
Calhoun only in our separating the mouse population into two groups-those 
560 days of age or younger and those greater than 560 days old. We estimated 
numbers in the two groups at 23 day intervals through the entire study. Dates 
of birth and death were estimated to the day by Calhoun and his coworkers so 
population estimates are reasonably accurate even when falling between 
census dates. 

3. Model 

Our approach is to view the population as divided into “young” and “old” 
groups, with the estimated average age of female menopause (560 days) as the 
partitioning criterion (Calhoun, 1973) and to model population growth by 
coupled differential equations as suggested in Ch. 12 of Keyfitz (1968). The 
older group, in its role as competitor for the limited space with attendant 
negative influence on the production and maturing of young, is considered a 
predator. The younger group, whose well-being and prosperity is limited by 
the density of the predator, is viewed as prey. However, instead of using the 
system of linear differential equations of Keyfitz (1968) we used Lotka’s 
(1956) classic coupled non-linear differential equations (Lotka, 1956). With 
this model both populations show periodic variations with amplitudes 
dependent on the displacement of the initial populations from a neutrally 
stable equilibrium (Pielou, 1969). 

The classical model expresses predator mortality in the absence of prey as a 
linear function of predator density y, 

d-l? = -k\,, 
dr ’ 

(1) 

Data taken from the latter phases of the experimental population, after the 
“young” group had vanished, exhibited a convexity in the logarithm which 
suggested the alternate mortality formulation 

9- 
dt 

- -kvl-” 
- ’ 

E small, positive. (2) 

The solution (vi - ckt)l” to (2) approaches the exponential solution to 
(11,~ = y. epkt as E approaches 0 and, for fixed E > 0 intersects the exponential 
at a time T, when the model populations have decreased to less than unity (see 
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Appendix). Therefore, in the time range of interest for population studies, 
populations modeled by (2) decrease more slowly than their exponential 
counterparts. 

Model Parameters 

To adduce the relationship between the experimental data and the model 
proposed we break down population history into three non-overlapping 
phases : 

(A) PHASF I 

Only the younger group is present; the population s(r) grows exponentially 
with rate k i . i.e. s( r ) = s(0) ekl’. The rate li i was derived from a regression of 
the appropriate data and has value 0.0075 day I. 

(B) PHASE II 

Both groups coexist. The interaction is realized as the young pass the critical 
age. The passing of individuals from the younger group to the older. the 
repressive effect of the older on the population of young and the shrinking of 
the reproductive age span from increased crowding. is represented as a 
predator-prey interaction. In view of the observation concerning mortality. 
the differential-equation formulation is 

Justification of the quadratic interactive term is taken up in the discussion. 

(C) PHASE III 

Only the older group survives. The extinction of the group is governed by 

y(t) = of-Ek4f)l L (4) 

and the parameter choices k4 = 0.0127 (mice)‘.’ day ‘% t: = 0.08 optimally 
conform to the experimental data. The interaction parameters kz and k, were 
evaluated from data collected in Phase II of the population history. 

The variable metric extension of the steepest descent algorithm (Davidon, 
1959) was employed to minimize the difference between model simulations 
and population data with respect to parameters k, and k,. Optimal values 
obtained were k, = 0.63 x lop3 (mice)-’ day-‘. k, = 0.295 x lop4 
(mice)-’ day- ‘. Experimental data together with model solutions for the 
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FIG. 1. Comparison of experimental data with model simulations. Abscissa: Population of 
younger age group. Ordinate: Population of older age group. l : Experimental data (46 day 
intervals). -: Model simulations for optimal parameter values: E = 0.08, k, = 0.0075 &r-r, 
k2 = 0.63 x 10-s (# old age group)-’ day- I, k3 = 0.295 x lo-“ (# young age group)-’ day-‘, 
k, = 0.0127 (8 old age group)0r’8 day-‘. -: Typical behavior of rejected model with linear 
predator gain. 

above parameter values are shown in Fig. 1. The gap in the upper left-hand 
corner represents model transition from Phase II to Phase III. Figure 2 shows 
the time dependence of the optimized model solution x(t), y(t). 

It is of interest to observe that an effect of positive E is to destabilize the 
population trajectory in its progression around the stationary point 

k, k, -’ 
p- - 

0 k3 kz ’ 
y* = 2 (Lotka, 1956). 

2 
(5) 

When E = 0 the trajectory is neutrally stable with population amplitudes 
depending on initial populations, and the eigenvalues of the stability matrix 
are purely imaginary. Positive E provides the eigenvalues with a positive real 
part and the trajectory spirals away from the stationary point. 

Excellent accounts of graphical stability analysis of various predator-prey 
interactions and the evolution of the predator isocline appear in the literature 
(Rosenzweig & MacArthur, 1963 ; Rosenzweig, 1973). 

barth
Oval

barth
Callout
null cline analysis shows that the figure must have been produced using k2=0.62e-4
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FIG. 2. Time dependence of model solutions. Abscissa: Population (log scale). Ordinate: Time 
(days. arithmetic scale). l : Ex perimental data, x(t) young population. ~$1) old population. 

5. Discussion 

The choice of 560 days of age as a dividing point between young and old 
roughly separates the productive and unproductive females. This age is about 
midway through what Calhoun (1971) termed the adult stage of life. being 
preceded by preweaning, juvenile, subadult. and establishing adult and 
followed by declining and senescent stages. The parameters F, k, . I, :. k, , k, 
were found to be relatively insensitive to changes in the boundary defining 
young and old. In Phase II the quadratic interaction terms allow of three 
biological interpretations. 

(a) Transition of individuals from younger to older group. 
(b) Direct repression of reproductive rate by deteriorating maternal 

behavior. 
(c) Early sexual withdrawal of young mice. 

As the population enters Phase II, about 500 days after colonization, the 
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social pressure exerted by the old on the young is expressed as a linear 
depression of the birth rate of the young 

dx 
- = x(k, - kz>!), 
dt 

x(t) = f; of young. 

The old age group, in turn, gains in proportion to the number of young 
present. If a simple linear mechanism is postulated for the interaction 

dv 
A = k,x - k,y, 
dt 

y(t) = /y of old, 

the model predicts an approach to a stable nonzero equilibrium, shown 
typically as the dotted curve in Fig. 1. Such behavior is at variance with the 
observations of the population and no attempt was made to evaluate the 
interactive constants k, and k,. The model was rejected in favor of quadratic 
predator gain : 

In addition, observation of the population in its senescent Phase III, after all 
the young have disappeared, has resulted in a further attribute of the model 
for the old group; the nonlinear death rate. 

A heuristic explanation of the choice for the quadratic predator gain derives 
from consideration of the time progression of the age structures of the two 
groups. 

At about 500 days into the experiment, when the first old appear, the age 
distribution of the young group is exponential. As the density of the old group 
increases, the birth rate of the young group is depressed and the density of 
young shows an age distribution whose mode propagates toward higher 
age. Eventually this maximum age reaches the boundary age between old and 
young and the number of young “eaten” decreases. causing the pressure 
depressing the birth rate of the young to decrease. The number of very young 
in the young group consequently increases again and a second age wave begins 
to progate through the young group. The total density of the young again 
increases in response to the age wave. Periodic fluctuations are indicated. This 
is typical of classical predator-prey behavior when the death rate of the 
predator is linear. These considerations led us to the quadratic choice for the 
predator consumption interaction. 

In the early and middle stages of Phase II, when the density of the older 
cohort was relatively low, considerable social unrest was observed. Among the 
components contributing to the unrest were a preoccupation with territorial 
competition and an instability in the normal polygynous social system. 
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Although the killing of aging males by challengers was responsible for most of 
the high per capita death rate at this stage of social development. a 
corresponding high death rate was noticed in the females. The female deaths 
were due both to direct attack and to exclusion from nests. feeding areas. etc. 
(mostly by other females). 

As the density of the older group increased, traditional social behavior 
began to deteriorate and an increasing proportion of the group became 
asocial. These asocial mice spent much of their time eating. sleeping. and 
grooming themselves, but eschewing normal sexual and territorial activities. 
They were termed “beautiful ones” by the scientists engaged in the experiment 
(Calhoun. 1973), and their chances of survival were greater than that of 
normal mice. We believe that the change in social structure brought about by 
density pressure accounts for the observed convexity in the logarithm of the 
older population and. equivalently, a decreased per capita death rate in the 
latter stages of Phase II and in Phase III. 

The observed increase in per capita death rate m the latter stages of Phase 
III is again the result of an increasing average age within an age group. In 
Phase III there is no input to the older group from the younger and. as the 
average age increases toward the natural animal life span, there is a 
consequent increase in the per capita death rate. The age structure of the 
model is of course primitive. but does provide an illustration of the application 
of a traditional model of trophic interaction to a single population. 
Conceptualization of population dynamics as the result of the interaction of 
two or more age classes is a potentially valuable modeling tool. and many 
natural mammalian populations may be regulated by constraints of older 
individuals upon reproduction or survivorship of younger age classes (Sadlier. 
1965; Healey, 1976; Slade & Balph. 1974; Dunford, 1977). In as much as 
aging is a natural process in all populations the dynamics of many populations 
may follow the general scheme of old “preying” on young. The details of the 
coupled differential equations will probably vary with the situation. For 
example the use of a multiplication interaction term for the effect of young on 
old and the exponent (1 - c) both were the result of changes in the age structure 
within an age group and so may well be unique to Calhoun’s data. The 
inclusion of (1 -E), without restriction on the value of E, may be a desirable 
modification of the classical predation model because it allows for interaction 
among the predators, and F: is a parameter to be estimated from the data. 
However, the general form of the impact of young on old is a more 
complicated function of the young and its choice must be based on the 
experimenter’s conception of the problem, and the specific dynamics of the 
population. However. we anticipate that extension of the modeling 
philosophy in which age structures are incorporated with nonlinear 
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population effects, such as predation and population-dependent death rates, 
will become a powerful predictive tool in population dynamics. 

APPENDIX 

We claim that the positive solution t = TO of 

or 

(A21 

At the unique positive time TO obtained by solution of the above 
transcendental relation both model populations have been decreased to 

E:eP;}“‘. 
(A3) 

The claim follows by observing that the function 

.t’ emx 

1 -e--r (A4) 

has positive limit unity at the origin and decreases monotonically through 
positive values to zero as .x increases through positive values. 
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