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In this paper, we consider an interaction of prey and predator species where prey
species have the ability of group defence. Thresholds, equilibria and stabilities
are determined for the system of ordinary differential equations. Taking carrying
capacity as a bifurcation parameter, it is shown that a Hopf bifurcation can occur
implying that if the carrying capacity is made sufficiently large by enrichment of the
environment, the model predicts the eventual extinction of the predator providing
strong support for the so-called ‘paradox of enrichment’.
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1. INTRODUCTION

The formulation of the model considered in this paper is motivated by the Seren-
geti ecosystem which can be divided into two habitats for wild life: (a) open south-
ern grasslands with low rainfall that support a relatively low biomass of short-
growing grasses and (b) wooded northern grasslands with higher rainfall that sup-
ports tall, highly lignified grasses (Braun, 1973; McNaughton, 1979, 1985). Rain-
fall is a key factor influencing primary productivity in both grassland types (Braun,
1973; Sinclair, 1975; McNaughton, 1979, 1985). Each year, some 1 million wilde-
beest migrate across the serengeti mara ecosystem (Kreulen, 1979). The crude cost
of this movement, relative to the neighbouring resident population of wildebeest,
is a 3% increment in mortality per year (Sinclair, 1983). The overall migratory pat-
tern is thought to be related to food supply, which is itself dependent on an uneven
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distribution of rainfall (Grzimek and Grzimek, 1960; Talbot and Talbot, 1963;
Anderson and Talbot, 1965; Pennywick, 1975; Maddock, 1979). In the dry sea-
son, they need to drink (Jarman, 1972) and most home ranges include some river-
bank habitat which is preferentially used during that season. At the start of the
wet season, they move away from the rivers to occupy the woodlands where they
feed predominantly on new green grass leaves, with some herbs, many of these
plants may be annuals. As grasses mature and rains cease, their diet starts to
include progressively more browse and they move into plant communities where
browse is more. Movements could also be influenced by change in requirements
for specific nutrients. Kreulen (1975) noted that Serengeti wildebeest on their wet
season preferred a short grass over a long grass habitat, and that calcium concen-
trations were higher on the short grassland. Migration has also been attributed to
the wildebeest’s dislike of wet and sticky ground (Talbot and Talbot, 1963; Ander-
son and Talbot, 1965). In this way herbivores maximize the growth potential of
the vegetation through rotational grazing where movements are called seasonal
migrations.

Among related herbivore species, individuals of smaller species like Dik-dik will
be vulnerable to a greater range of predator species and are less likely to be able
to defend themselves against, or to out run, predators. All small species avoid
being detected by predators. Smaller species are likely to have to seek carefully
their scare scattered food item of high quality and form less cohesive and coordi-
nated feeding groups. They live singly or in pairs and find their resources within
a defended territory. Here defended territory means the area where small prey
species live and do not leave for feeding because they do not have defending capa-
bility with predators. Because they are small and vulnerable, they move and feed
cautiously and slowly and never move far from cover. The size of the territory is
presumably determined by the area that a pair can defend and by the availability
of suitable food at the season of greatest scarcity. These species characteristically
remain in one vegetation type in all seasons.

Larger species individuals feeding upon abundant, evenly dispersed, easily found
items, are likely to be tolerating low quality food. They form enormous, rather
formless, feeding aggregations of many thousands of animals. Major predators
of zebra, buffalo, kongoni, toki and Thomson’s gazelle are hyena, wild dog, lion,
leopard and cheetas. They form groups for defence against predators and more
likely depend upon self-defence, group-defence, group alertness within a group
and speed, to avoid being killed by a predator. Dense vegetation and broken terrain
disrupt visual communication, and flat open country favour it. So, such groups
are more likely to be found where visual communication is favoured and where
individuals can conform to the group, speed and direction of movement. Unless
the group remains cohesive and coordinated, the individual risks becoming an out-
standing target. At all times individuals in groups must remain in communication
and their speeds and direction when moving must vary little between individu-
als. Group defence is a term used to describe a phenomenon whereby predation
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is decreased or even prevented altogether by the ability of the prey population to
better defend or disguise themselves when their number is large. Hence, dou-
bling the local density of herbivores while predator density remains unchanged
could lead to a halving of the mortality risk (Hamilton, 1971; Bertram, 1978). Of
course, this assumes that predators do not seek out areas with very large prey den-
sity (Schaller, 1972). Pairs of musk-oxen can be successfully attacked by wolves
but groups are rarely attacked (Tener, 1965). There are many examples of group
defence—Yang and Humphrey (1975), May and Robinson (1985) and Holmes and
Bethel (1972). Herds remain well coordinated even under attack and individuals
may benefit from the alertness and communication within the herd. Individuals
tend to conform with their neighbour activities, and many hundreds, even thou-
sands of wildebeest can coordinate rapidly in response to an alarm. Large groups
also benefit from increased probability of detection of predators. The hunting suc-
cess of lions decline if the group size of prey is large (van Orsdol, 1984). Cheetah
prefer to hunt single animals. Coursing predators select less healthy, old, sick and
young prey and those who have lost their herds during migration due to various
reasons. Animals in poor condition and without group may reduce vigilance rates
(Sinclair and Nortan-Griffths, 1979).

In a predator–prey environment, the predator prefers to feed itself in a habitat for
some duration and then changes its preference to another habitat. This preferential
phenomenon of change of habitat by the predator is called switching. There may
be several reasons of switching of predators. For example, a predator prefers to
catch prey species in a habitat where they are in abundance but after some duration
of heavy predation, when the prey species population starts declining, the predator
changes its preference to another habitat. In this habitat prey species are greater
in number due to less predation, i.e., the predator feeds preferentially on the most
numerous prey species habitat. This is found to be the case when prey species is
relatively smaller in size with little or insignificant defence capability with respect
to predator, like small antelope and cruising predators to locate prey. Many exam-
ples may be cited where a predator prefers to prey species that is most abundant at
any time, see Fisher-Piette (1934), Lawton et al. (1974) and Murdoch (1969). The
mathematical models which have been generally proposed with such type of preda-
tor switching are those involving one predator with two prey species, e.g., Holling
(1961), Takahashi (1964), May (1974), Murdoch and Oaten (1975), Roughgarden
and Feldman (1975), Tansky (1976, 1978), Prajneshu and Holgate (1987) and Ter-
amoto et al. (1979). In these papers switching has been found from protozen to
birds. We presume this is a generic feature.

Freedman and Wolkowicz (1986) considered a predator–prey system in which
the prey population exhibits group defence. They described that if the carrying
capacity of the prey population is sufficiently large and there is no mutual inter-
ference among predators then the predator population always goes to extinction.
Ruan and Freedman (1991) analyzed group defence in Gauss-type models for three
species. They gave criteria for persistence when there is no mutual interference
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and when there is mutual interference of predators. Freedman and Ruan (1992)
have discussed a three species food chain model with group defence. They have
shown that the model undergoes a sequence of Hopf bifurcations, using the carry-
ing capacity of the environment as a bifurcation parameter.

We consider a system having a predator species interacting with the same prey
species in two habitats. Prey is able to migrate among two different habitats at
some cost to the population in the sense that the probability of survival during a
change of habitat may be less than one. The predator can feed on either habitats.
The prey species in both habitats have the ability of group defence but it will be
effective in the habitat where the population of prey species is large. The predator
will be attracted towards that habitat where prey species are less in number. A sim-
ple model is described here and some preliminary analysis is presented. This has
provided an opportunity to determine a threshold parameter A and to show that
prey–predator population can persist if and only if A ≤ 1. If A > 1 then there will
be Hopf bifurcation and population will survive undergoing regular fluctuations.

Tansky (1978) investigated a mathematical model of a two prey and one predator
system which has the switching property of predation of the following form:
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tic property of a switching mechanism. For instance, the intertidal snail Nucella
lapillus preferably feeds barnacels when these are abundant but when mussels dom-
inate, the latter are preferred (Fisher-Piette, 1934). This preferential phenomenon
from a rare species to a most abundant one is known as switching. Lawton et al.
(1974) have reported switching by two species of aquatic invertebrate predators,
Notonecta and Ischnura, under laboratory conditions. They also established that
switching is a normal feature of predator behaviour. More examples on switching
can be found in Murdoch (1969). The predatory rate that an individual of the prey
species is attacked by a predator decreases when the population of that species
becomes rare compared with the population of another prey species. For n = 1
these functions represent a simple multiplicative effect (Tansky, 1978) whereas for
n > 1, these represent an effect that is stronger than the simple multiplicative effect
(Prajneshu and Holgate, 1987). In the model below, we effectively assume n = 1
for simplicity. The case when n > 1 will be studied in a later paper.
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2. THE MODEL

Let x1(t), x2(t) be the prey species at time t in the first and second habitats
respectively and y(t) at time t denotes predator species which feed upon x1 and x2.
These are the state variables of our model. We are assuming that prey lives in two
different habitats and predators live together away from prey species. Only at the
time of attack they interact with each other. We are also assuming that predator
species that disperses between two habitats have no barriers. We further assume
that each prey species obeys logistic growth. Prey species are able to disperse
among two different habitats at some cost to the population. Prey species have
the ability of group defence, so predator will go towards the habitats where prey
population is less numerically. This situation is described as given below:
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(2.1)

where

gi the net effect or birth rate, death rate and the emigration rate.
ki represents carrying capacities for prey species.
ei inverse barrier strength in going out of the first habitat and the second habitat.

pi j the probability of successful transition from i th habitat to j th habitat.
βi Predator response rates towards the two prey x1 and x2 respectively.
δi the rate of conversion of prey to predator.
µ per capita death rate of predator.

We have neglected dispersion since the spatially distribution is fairly uniform
over the given habitats and, in order to investigate the possibility of the switching
effects giving rise to oscillatory behaviour, we have assumed the dispersion coeffi-
cient is infinite. If it is infinite the effect demonstrated here will be preserved and
even greater enriched behaviour will ensue. This will parallel the outcome for spa-
tially distributed and uniform reacting/dispersing systems, that is ‘spatial structure
always enhances complexity and never decreases it’.

We assume that βi , δi , ei , pi j , gi , ki and µ are positive constants. In order to
avoid the mathematical complexity and to reduce the number of parameters, we
consider here a considerably simplified case of the system (2.1), in which we
assume the symmetrical relations e1 p12 = e2 p21 = e, β1 = β2 = β, g1 = g2 = g,
δ1 = δ2 = δ, k1 = k2 = k. Furthermore, if we transform et = τ , we obtain
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the equations
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where g
e = p1, β

e = β ′, µ

e = µ1, 2δ = δ′.

3. STEADY STATES

We find the steady states of equation (2.2) by equating the derivatives on the left-
hand sides to zero and solving the resulting algebraic equations. This gives two
possible steady states

(i) x̄1 = x̄2 = ȳ = 0, i.e., the population is extinct and this always exists.
(ii)

x̄1 = µ1(x̄ + 1)

δ′β ′ , x̄2 = µ1(x̄ + 1)

δ′β ′ x̄

ȳ = 1 + x̄

β ′

(
p1 − p1

k
x̄1 + 1

x̄

)
or equivalently

ȳ = 1 + x̄

β ′ x̄

(
p1 − p1 x̄2

k
+ x̄

)
.

(3.1)

Here x̄ = (x̄1/x̄2) is a real positive root of the cubic equation

p1µ1 x̄3 + (δ′β ′k − δ′β ′kp1 + p1µ1)x̄2 + (δ′β ′kp1 − p1µ1 − δ′β ′k)x̄ − p1µ1 = 0.

(3.2)
Obviously x̄ = 1 is the one real positive root of equation (3.2). The other two

values of x̄ will be real and positive if

δ′β ′k
δ′β ′k − 2µ1

< p1 ≤ δ′β ′k
δ′β ′k − 4µ1

. (3.3)

When x1 = x2 there is one real positive root independent of k (carrying capacity).
The other two roots will depend on k. The existence of Hopf bifurcation for those
roots which satisfy equation (3.3) will be studied at a later stage. We note that the
equation (3.3) implies that the net specific growth rate of the prey species should be
greater than inverse barrier strength in going out of the first habitat and the second
habitat.
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4. STABILITY ANALYSIS

Consider small disturbances from the steady state and linearizing the resulting
equation, we obtain the stability matrix from (x̄1, x̄2, ȳ) = (0, 0, 0) (the extinct
steady state) as follows: 

 p1 1 0
1 p1 0
0 0 −µ1


 . (4.1)

The characteristic equation of this matrix is

(µ1 + λ)[(p1 − λ)2 − 1] = 0. (4.2)

One eigenvalue will always be positive so the steady state x̄1 = x̄2 = ȳ = 0 is
unstable.

Following the same procedure the stability matrix for the nonzero steady state
(x̄1, x̄2, ȳ) becomes




−p1 x̄1
k − 1

x̄ + β ′ x̄ ȳ
(1+x̄)2 1 − β ′ x̄2 ȳ

(1+x̄)2
−β ′ x̄1
1+x̄

1 − β ′ ȳ
(1+x̄)2

−p1 x̄2
k − x̄ + β ′ x̄ ȳ

(1+x̄)2
−β ′ x̄1
1+x̄

δ′β ′ ȳ
(1+x̄)2

δ′β ′ x̄2 ȳ
(1+x̄)2 0


 . (4.3)

The stability matrix equation (4.3) leads to the characteristic equation

λ3 + a1λ
2 + a2λ + a3 = 0, (4.4)

where

a1 = −L − M

a2 = M L + Qx̄2 − (A − 1)(Ax̄2 − 1) + Q

a3 = −M Qx̄2 + Q(1 − Ax̄2) + Q(1 − A)x̄2 − QL

L = −p1 x̄2

k
− x̄ + Ax̄ , M = −p1 x̄1

k
− 1

x̄
+ Ax̄

Q = δ′β ′ Ax̄1

1 + x̄
and A = β ′ ȳ

(1 + x̄)2
. (4.5)

By the Routh–Hurwitz criterion, it follows that all eigenvalues of equation (4.4)
have negative real parts if and only if

a1 > 0, a3 > 0, a1a2 > a3.
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Using x̄ = 1 a real positive root of equation (3.2) and assuming A ≤ 1 gives
L = M = −p1 x̄1

k − (1 − A) < 0. Hence a1 > 0.
Now a3 = −M Q + 2Q(1 − A) − QL > 0.
To show that a1a2 > a3

i.e., −(L + M)(M L + Q − (A − 1)2 + Q) > −M Q + 2Q(1 − A) − QL
or (L + M)(−M L + (A − 1)2) − Q(L + M + 2 − 2A) > 0.

Since M L = L2 = p2
1 x̄2

1
k2 −2 p1 x̄1

k (A−1)+ (A−1)2, hence −M L + (A−1)2 < 0,
and L + M + 2 − 2A = −2p1 x̄1

k < 0.
Therefore a1a2 > a3. Hence we have the following result.

THEOREM 1. If A ≤ 1 then the nonzero steady state (x̄1, x̄2, ȳ) is locally asymp-
totically stable.

The above theorem discussed the case for A ≤ 1. A > 1 implies g > e where
g is the specific growth rates of prey and e is the inverse barrier strength. This
gives ȳ > 4e

β
. Hence β < 4e since ȳ > 1. This means the predator response rates

towards prey can be greater than the inverse barrier strength.

5. HOPF BIFURCATION ANALYSIS

We study the Hopf bifurcation for the system (2.2) when ȳ > 4
β ′ , using carrying

capacity k as the bifurcation parameter. The characteristic equation (4.4) has two
purely imaginary roots if and only if a1a2 = a3 for some value of k (say k = k̄).
At k = k̄ the equation a1a2 = a3 leads to (A − 1 − L)[Q1 A + 2L(A − 1 + L)] = 0
where Q1 = δ′β ′ x̄1 and A − 1 − L �= 0. Hence

Q1 A + 2L(A − 1 + L) = 0 at k = k̄. (5.1)

On substitution this becomes

k2{µ1(p1 + 1) + (p1 − 1)2} + k{−µ1 p1 X̄2 − 5p1(p1 − 1)X̄2} + 6p2
1 X̄2

2 = 0.

Therefore there will be at least one value of k = k̄ provided that

µ1 + 5p1 > 5 and µ1(14p1 + 34) < µ2
1 + (p1 − 1)2,

at which we have Hopf bifurcation. For some ε > 0 for which k̄ − ε > 0, there is a
neighbourhood of k̄, say (k̄ − ε, k̄ + ε) in which the characteristic equation cannot
have real positive roots. For k = k̄, we have

(λ2 + a2)(λ + a1) = 0 (5.2)
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which has three roots

λ1 = i
√

a2, λ2 = −i
√

a2, λ3 = −a1.

The roots are in general of the form

λ1(k) = p(k) + iq(k)

λ2(k) = p(k) − iq(k)

λ3(k) = −a1(k).

To apply the Hopf bifurcation theorem as stated in Marsden and McKracken
(1976) we need to verify the transversality condition

dp

dk

∣∣∣∣
k=k̄

�= 0. (5.3)

Substituting λi(k) = p(k) + iq(k) into equation (4.4) and differentiating the
resulting equation with respect to k and setting p(k̄) = 0 and q(k̄) = q̄1, we obtain

dp

dk
(−3q̄2

1 + a2) + dq

dk
(−2a1q̄1) = a′

1q̄2 − a′
3

dp

dk
(2a1q̄1) + dp

dk
(−3q̄2

1 + a2) = −a′
2q̄1

(5.4)

where a1, a2 and a3 are functions of k. Hence

da1

dk
= a′

1,
da2

dk
= a′

2, and
da3

dk
= a′

3.

Solving dp/dk and dq/dk, we have

dp

dk

∣∣∣∣
k=k̄

= −a2(a1a′
2 − a′

3 + a′
1a2)

2(a2
2 + a2

1a2)
. (5.5)

To establish Hopf bifurcation at k = k̄, we need to show that

dp

dk

∣∣∣∣
k=k̄

�= 0 i.e., a1a′
2 − a′

3 + a′
1a2 �= 0. (5.6)

Substituting the values of a1, a′
2 and a′

3 and using the equation (4.1), we get

a1a′
2 − a′

3 = p1 x̄1

k2
[−11L2 − 3L(A − 1) − Q1(L + 1)] < 0

since A > 1, L + 1 = A − p1 x̄1
k > 0 because p1 x̄1

k < 1 for the growth rate to

be positive for all values of x and a′
1a2 < 0 we have dp

dk

∣∣∣
k=k̄

> 0 and λ3(k̄) =
−a1(k̄) �= 0. We summarize the details in the following:



118 Q. J. A. Khan et al.

0 10 20 30 40 50 60 70 80

x 2

τ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 1. The graph of x2 vs. τ for the parameter values p1 = 1.3, β′ = 0.6, µ1 =
0.3, δ′ = 0.7 and k = 1.8. These values give A = 0.63 implying stable behaviour for
A ≤ 1.

THEOREM 2. There exists a value k̄ such that the system (2.2) exhibits Hopf bifur-
cation in the first octant for k > k̄ provided A > 1.

The above theorem implies sufficiently increasing the prey carrying capacity can
cause destabilization. That is predation is decreased or eliminated due to the ability
of prey to defend or disguise themselves as their number increase.

6. NUMERICAL RESULTS

The set of equations given in (2.2) have been numerically integrated using the
routine ‘rk45’ available in Matlab for three different cases. The initial conditions
used are the corresponding equilibrium values in each case with slight perturba-
tions. The results indicating the variation of prey species x1, x2 against time τ and
the variation of predator species against time τ are given in Figs. 1–6 with the
corresponding parameter and A values. Figures 1 and 2 give the behaviour of x2

(same for x1) and y with respect to τ when A ≤ 1 and as expected, we get stable
behaviour. Figures 3–6 give the effect of the parameter k on the stability when
A > 1. We find that for k > k̄ the equilibrium destabilizes and limit cycles arise
by Hopf bifurcation while for k < k̄ the equilibrium is stable.

7. SUMMARY AND CONCLUSIONS

We have formulated a simple model to describe the interaction of predator species
with large size of prey species. The prey species live in two different habitats and
exhibit group defence against the predator population. The group defence will be



Analysis of a Predator–Prey System with Predator Switching 119

0 10 20 30 40 50 60 70 80 90 100
τ

y

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2. The graph of y vs. τ for the parameter values p1 = 1.3, β′ = 0.6, µ1 = 0.3,
δ′ = 0.7 and k = 1.8. These values give A = 0.63 implying stable behaviour for A ≤ 1.
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Figure 3. The graph of x2 vs. τ for the parameter values p1 = 1.8, β′ = 0.8, µ1 = 0.06,
δ′ = 0.5 and k = 9. These values give A = 1.1 implying stable behaviour for A > 1 and
k < k̄.

effective in the habitat where the population of prey species is large. The predator
can feed on either habitats but it will be attracted towards that habitats where prey
species are less numerically. Due to seasonal changes, prey species move from one
habitat to other at the cost of mortality. We are assuming that predator species that
disperse between two habitats in a heterogeneous environment and all the preda-
tors lump together and live away from prey species. At the time of attack they
interact with prey and go back to their place. A number of authors have studied
several mathematical models of prey–predator with predator switching, but to our
knowledge all the models are based on insect, bird or fish systems. We are inves-
tigating in this model the prey–predator system as a mammal system. We have
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Figure 4. The graph of y vs. τ for the parameter values p1 = 1.8, β′ = 0.8, µ1 = 0.06,
δ′ = 0.5 and k = 9. These values give A = 1.1 implying stable behaviour for A > 1 and
k < k̄.
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Figure 5. The graph of x2 vs. τ for the parameter values p1 = 1.2, β′ = 0.8, µ1 = 0.6,
δ′ = 0.5 and k = 105. These values give A = 1.1 implying limit cycles for A > 1 and
k > k̄.

been able to carry out a stability analysis for both zero and non-zero equilibrium
points. The zero equilibrium (0, 0, 0) will always be unstable. For non-zero equi-
librium (x̄1, x̄2, ȳ) we have found a threshold condition, on the predator response
rates towards prey. If this is sufficiently high in comparison to the inverse barrier
strength, then there is a stability switch in the equilibrium solution leading to a
supercritical Hopf bifurcation. This is at A = 1 in the above analysis (see the note
after Theorem 1). If A ≤ 1 then the system evolves towards a stable prey–predator
state. If A > 1 and k > k̄ the equilibrium destabilizes and stable limit cycles
arise by Hopf bifurcations. In the region A > 1, we used the carrying capacity of
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Figure 6. The graph of y vs. τ for the parameter values p1 = 1.2, β′ = 0.8, µ1 = 0.6,
δ′ = 0.5 and k = 105. These values give A = 1.1 implying limit cycles for A > 1 and
k > k̄.

the environment as the bifurcations parameter and we were able to show that there
may be a stable region in the neighbourhoods of the interior steady state where the
steady state may be stable or unstable. In this way Hopf bifurcation has helped
us in finding a region of instability in the neighbourhoods of nonzero equilibrium
where the population will survive undergoing regular fluctuations.

We have shown numerically that if we increase the prey carrying capacity suffi-
ciently large by enrichment of the environment it could lead to extinction of the
predator population. The predator cannot survive on the prey species because
their population is large and where group defence prevents the predator popula-
tion increasing at any level. Our paper is another example supporting the warning
that ‘man must be careful in attempting to enrich the ecosystem in order to increase
their food yield. There is a real chance that such activity may result in a decima-
tion of the food species that are wanted in greater abundance’. This is the so-called
paradox of enrichment.

The results and methodological framework outlined here will provide a useful
tool to investigate the consequences for particular real systems to future work. We
are assuming that predator species that disperse between two habitats in a hetero-
geneous environment do not involve a barrier. There could be mechanisms for
predator survival such as the introduction of time delays or the introduction of a
third population which interacts with the predator–prey system.
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