1. Use the definition of slope of a tangent line and the limit laws to find the slope of the tangent line to the graph of the function $f(x)=8 x^{2}-x+2$ at the point $(a, f(a))$. Write with complete detail.
2. An airplane is traveling in a path shaped like the graph of the parabolic function

$$
f(x)=x^{2}-x
$$

The slope of the tangent line to the path at any point $x=a$ is given by

$$
f^{\prime}(a)=2 a-1 .
$$

The airplane starts at a point 5 miles west and 30 miles north of the origin, traveling in the increasing x direction. At what point will the airplane be flying directly toward the point $(-1,0)$?
3. Suppose f is a continuous, differentiable function with the property that

$$
|f(x)| \leq x^{2} \quad \text { for all } x
$$

Use the Squeeze Law for limits to show that $f(0)=0$ and that $f^{\prime}(0)=0$.
4. If f is a continuous, differentiable function at the point a and $g(x)=x f(x)$, use the definition of derivative to show that

$$
g^{\prime}(a)=a f^{\prime}(a)+f(a) .
$$

5. A tank used for portland cement consists of a cylinder mounted on top of a cone, with its vertex pointing downward. The cylinder has a height of 15 feet, both the cylinder and the cone have a radius of 6 feet, and the cone has a height of 3 feet.

- Determine the volume of cement contained in the tank as a function of the depth d of the cement.
- What is the domain of this function?

6. Consider the pairs of parametric equations:

$$
x=2-3 t \quad \text { and } \quad y=7-6 t
$$

and

$$
x=t-1 \quad \text { and } \quad y=1+2 t .
$$

- Show that both of these pairs of equations produce the same line.
- What are the slope and y-intercept of this line?
- If, in the first pair of equations, t varies in the interval $[0,1]$, what interval must t be in for the second pair of equations to cover the same line segment?

7. Is the function f given by

$$
f(x)=-2 x+\sqrt[5]{3-2^{x+1}}
$$

continuous at all points in its domain? Why or why not? It is possible to deduce that there must be some number c between 0 and 1 where $f(c)=0$. Explain why we can make this conclusion.
8. Suppose the graphs of x and y as functions of t look like

Describe how x and y increase and decrease as t increases, and use these observations to draw a rough sketch of the parametric curve in the $x y$ plane, including an arrow indicating how the curve is traced out as the parameter t increases.
9. Decide whether the given function has an inverse. Thoroughly defend your decision.
(a) $P(x)$ is the cost, in cents, of mailing a letter that weighs x ounces.
(b) $C(t)$ is the total number of cars which have driven past a particular point along a highway during a specific day where t represents the time, in hours, since midnight.
(c) $V(x)$ is the volume of a cube whose side has length x.
(d)

$$
f(x)=(x-3)^{2}+1
$$

(e)

$$
g(x)= \begin{cases}x^{2}+2 & x<0 \\ 1-x & x \geq 0\end{cases}
$$

10. The graph of $y=f(x)$ is given by

(a) On which intervals is f increasing?
(b) On which intervals is f decreasing?
(c) Sketch a graph which could represent $y=f^{\prime}(x)$.
11. Explain why

$$
\frac{(3 x-2)(x-4)}{(x-4)} \neq(3 x-2),
$$

but

$$
\lim _{x \rightarrow 4} \frac{(3 x-2)(x-4)}{(x-4)}=10
$$

12. Consider the function

$$
f(x)=\ln (\ln x))
$$

(a) State the domain and range of f
(b) Find $f^{-1}(x)$ and state its domain and range.

