
Math 113 Fall 2011

Final Exam Review

The scope of the final exam will include:

1. Integrals Chapter 5 including sections 5.1–5.7, 5.10

2. Applications of Integration Chapter 6 including sections 6.1–6.5 and section 6.8

3. Infinite Sequences and Series Chapter 8 including sections 8.1–8.4; sections 8.5–8.7 limited
to lecture material.

Chapter 5: Integrals

Chapter 5 is an introduction to integral calculus. In this chapter, we studied the definition of the
integral in terms of Riemann sums and we developed the notions of definite and indefinite integrals.
Later, we studied techniques for evaluating both of these kinds integrals.

Sigma Notation

A convenient shorthand for writing long (and even infinite) sums is the so-called “sigma notation.”
The expression a1 + a2 + · · ·+ an is abbreviated

∑n
i=1 ai i.e.,

n∑
i=1

ai = a1 + a2 + · · ·+ an,

but this representation of the sum is not unique. There are important formulas to know:

•
∑n

i=1 1 = n,

•
∑n

i=1 i = n(n+1)
2 ,

•
∑n

i=1 i
2 = n(n+1)(2n+1)

6 ,

•
∑n

i=1 i
3 =

(
n(n+1)

2

)2
,

and rules

•
∑n

i=1 kf(i) = k
∑n

i=1 f(i),

•
∑n

i=1[f(i)± g(i)] =
∑n

i=1 f(i)±
∑n

i=1 g(i)

Riemann Sums and Definite Integrals

Our introduction to definite integrals begins with Riemann sums. First, we divide the interval into
[a, b] into n subintervals, each of width

∆x =
b− a
n

.

Next, we determined the endpoints of these subintervals to be

xi = a+ i∆x.
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for j = 0, 1, 2, . . . , n. In particular, x0 = a and xn = b. Then a Riemann sum for a function
f on the interval [a, b] is defined to be

n∑
i=1

f(x∗i )∆x = f(x∗1)∆x+ f(x∗2)∆x+ . . .+ f(x∗n)∆x

where xi is an arbitrary sample point in the i-th subinterval [xi−1, xi] for i = 1, 2, . . . , n. We defined
the definite integral on [a, b] to be∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(x∗i )∆x

We we compute definite integrals using the limit definition above, we often take x∗i to be the
right-hand endpoint, xi, of the ith subinterval.

(Signed) area: The definite integral
∫ b
a f(t) dt is the signed area of the region in the plane

bounded by the graph of y = f(x) and the lines y = 0, x = a, and x = b. Remember that area
above the x-axis is positive, but area below the x-axis is negative.

Properties of Definite Integrals:

•
∫ b
a [f(t) + g(t)] dt =

∫ b
a f(t) dt+

∫ b
a g(t) dt and

∫ b
a kf(t) dt = k

∫ b
a f(t) dt

•
∫ a
a f(t) dt = 0;

∫ b
a f(t) dt = −

∫ a
b f(t) dt; and

∫ b
a f(t) dt =

∫ c
a f(t) dt+

∫ b
c f(t) dt

• If m ≤ f(x) ≤M on [a, b], then m(b− a) ≤
∫ b
a f(x) dx ≤M(b− a)

Evaluation Theorem: Suppose f is continuous on [a, b]. Then∫ b

a
f(t) dt = F (b)− F (a),

where F is any antiderivative of f , (i.e., F ′(x) = f(x)).
The Fundamental Theorem of Calculus: If f is continuous on the interval [a, b], then the

function F defined by F (x) =
∫ x
a f(t) dt is differentiable on [a, b] and

F ′(x) =
d

dx

[∫ x

a
f(t) dt

]
= f(x).

Indefinite Integrals

Integral Formulas: Know the integrals:

1.
∫
xn dx =

un+1

n+ 1
+ C, if n 6= −1

2.
∫

1
x dx = ln |x|+ C,

3.
∫
ex dx = ex + C,

4.
∫

sinx dx = − cosx+ C,

5.
∫

cosx dx = sinx+ C,

6.
∫

sec2 x dx = tanx+ C,
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7.
∫

secx tanx dx = secx+ C,

8.
∫ 1

1 + x2
dx = tan−1 x+ C,

9.
∫ 1√

1− x2
dx = sin−1 x+ C.

Techniques of Integration: This is what sections 5.5, 5.6 and 5.7 were all about. There are
several techniques, so we need a way to decide which to use. Here is a strategy to use when the
integral isn’t in one of the basic forms above:

1. Simplify: multiply, cancel, use trigonometric identities, etc.

2. Substitution: is there an obvious substitution? If the integral has the form
∫
f(g(x))g′(x) dx,

then use ∫
f(g(x))g′(x) dx =

∫
f(u) du, where u = g(x).

3. Integration by Parts: use
∫
u dv = uv −

∫
v du to replace a difficult integral with something

easier.

4. Classify: is the integral of one of the types we saw in Section 5.7?

• trig functions only? try using trig identities

• sum/difference of squares? radicals? consider a trig substitution

• rational function? try separating the fraction into the sum of rational functions whose
denominators are the factors of the original

5. Be creative: another substitution, parts more than once, manipulate the integrand (rational-
ize the denominator, identities, multiply by just the right form of “1”), or combine several
methods.

Additional Techniques of Integration

Trigonometric Integrals

For integrals of the form
∫

sinm(x) cosn(x) dx, consider the following strategies:

• If m is odd, save one sine factor and use sin2x = 1 − cos2x to express the remaining
factors in terms of cosine.

• If n is odd, save one cosine factor and use cos2x = 1 − sin2x to express the remaining
factors in terms of sine.

• If both m and n are even, use the half-angle identities

sin2 x =
1− cos 2x

2
cos2 x =

1 + cos 2x

2

to try to simplify. It is often helpful to recall sin 2x = 2 sinx cosx.
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Trigonometric Substitutions

Changing the variable of an integrand from x to θ using a trigonometric substitution allows
us to simplify the integration of forms with radicals that would otherwise not be amenable
to ordinary substitutions. The trig substitutions with which you should be familiar are:

• For
√
a2 − x2 use x = a sin θ

• For
√
a2 + x2 use x = a tan θ

• For
√
x2 − a2 use x = a sec θ.

Partial Fractions

We integrate rational functions (ratios of polynomials) by expressing them as sums of simpler
fractions, called partial fractions that we already know how to integrate. We have limited our
consideration to partial fractions in which the denominator is a quadratic and the numerator
is a linear form such as the following (from Example 4 of Section 5.7):∫

5x− 4

2x2 + x− 1
dx.

Hence, you should be able to re-express this problem in the form∫
A

2x− 1
+

B

x+ 1
dx

identifying A and B and completing the integration.

Improper Integrals

We have considered two types of improper integrals: integrals on infinite intervals and inte-
grals with discontinuous integrands.

Type 1 Improper Integrals

Integrals on infinite intervals have the forms∫ ∞
a

f(x) dx = lim
t→∞

∫ t

a
f(x) dx and

∫ a

−∞
f(x) dx = lim

t→−∞

∫ t

a
f(x) dx

An improper integral is convergent if the limit exists and divergent otherwise.

If both
∫∞
a f(x) dx and

∫ a
−∞ f(x) dx are convergent, then we define∫ ∞
−∞

f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx

Of particular interest is the integral
∫∞
1

1
xp dx which is convergent if p > 1 and divergent if

p ≤ 1.
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Type 2 Improper Integrals

We considered three cases involving discontinuities. If f is continuous on [a, b) and is discon-
tinuous at b, then ∫ b

a
f(x) dx = lim

t→b−
f(x) dx,

if this limit exists (as a finite number). Similarly,∫ b

a
f(x) dx = lim

t→a+
f(x) dx.

If f has a discontinuity at c, where a < c < b, and both
∫ c
a f(x) dx and

∫ b
c f(x) dx are

convergent, then we define∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

Hence, an integral over an interval where f has a discontinuity will diverge if the integral over
either half diverges.

Chapter 6: Applications of Integration

Area Between Curves

Given two functions f(x) and g(x) such that g(x) ≤ f(x) on the interval a ≤ x ≤ b, the area
between the graphs of y = f(x) and y = g(x) between x = a and x = b is

A =

∫ b

a
[f(x)− g(x)] dx.

Volumes

Always be sure to carefully consider the solid of interest to determine whether it will be easier to
integrate with respect to x or y. In the descriptions below, it is assumed that the integration will
be with respect to x. When integrating with respect to y, simply interchange the roles of x and y.

Disk method Given a function y = f(x), if we spin it about the x-axis we obtain a solid of
volume

V =

∫ b

a
π[f(x)]2 dx.

Washer method When there are “holes” in the solid of revolution, we use the washer method

V =

∫ b

a
π
(
[f(x)]2 − [g(x)]2

)
dx

where f(x) is function determining the outside radius and g(x) the inside radius. When the
revolution is carried out around a line other than the x- or y- axis, care must always be taken
to determine the appropriate radius function(s).
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Method of Cylindrical Shells For volume problems for which neither the method of disks or
washers applies, consider the method of cylindrical shells. The volume of a solid obtained by
rotating about the y-axis the region under the curve y = f(x) from a to b is

V =

∫ b

a
2πxf(x) dx

When the revolution is carried out around a line other than the x- or y- axis, care must always
be taken to determine the appropriate radius function(s). In more complicated situations (e.g.,
torus), care must also be taken to ensure that the height function is correctly determined.

Arc Length

We have the formulas for arc length of a curve

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx,

L =

∫ b

a

√
1 +

(
dx

dy

)2

dy,

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt,

where we denote the expression to the right of the integral sign by ds, the differential of arc
length. Here are some guidelines for deciding which version of ds to use:

• If the problem is written in terms of parametric equations, then use ds =

√(
dx
dt

)2
+
(
dy
dt

)2
dt.

• If the problem is given in terms of rectangular coordinates x and y, then:

1. if y = f(x) and you can’t solve for x (e.g., y = 2x− x2), then use ds =

√
1 +

(
dy
dx

)2
dx

2. if x = g(y) and you can’t solve for y (e.g., x = ln | sec y|), then use ds =

√
1 +

(
dx
dy

)2
dy;

3. if the equation may be expressed giving y as a function of x, y = f(x), and x as a
function of y, x = g(y) (e.g., 2y = 3x2/3), then try both formulas and see which is
simpler.

In all these problems, your first priority should be to simplify the expression under the square
root, since this is where the most difficulties arise. You should expect to have to use techniques
developed in chapter 5 to evaluate some of these integrals (e.g., trig substitution).

Average Value of a Function

The average value of a function f(x) over the closed interval [a, b] is

fave =
1

b− a

∫ b

a
f(x) dx.
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Probability

The probability density function f models the probability that X lies between a and b by

P (a ≤ X ≤ b) =

∫ b

a
f(x) dx.

The probability density function of a random variable X must satify the conditions f(x) ≥ 0
and ∫ b

a
f(x) dx = 1,

since probabilities are measured on a scale from 0 to 1.
The mean of a random variable X with probability density function f is given by

µ =

∫ ∞
−∞

xf(x) dx,

while the median is the number m such that∫ m

−∞
f(x) dx =

∫ ∞
m

f(x) dx =
1

2
.

In more generality, we defined the pth quantile for a random variable as∫ qp

−∞
f(x) dx = p.

The probability density function most commonly used to model a waiting time X is the expo-
nential density

f(x) =

{
0 x < 0
1
β e
−x/β x ≥ 0.

The parameter β of the exponential density is also its mean.
The most important distribution of all is the normal distribution with probability density

function

f(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2)

The density is defined for −∞ < X <∞ and has parameters mean µ and standard deviation σ.

Chapter 8: Infinite Sequences and Series

Sequences

A sequence is a function f : {1, 2, 3, . . .} → R, which we often think of as an ordered list of
real numbers a1, a2, a3, . . . , an, . . . , where an = f(n). We say that a sequence converges to the
limit L if the terms an get arbitrarily close to L as n → ∞. Sometimes the terms of a sequence
are determined by an explicit formula, but sometimes they are defined recursively by specifying
the value of a1 and then indicating how to obtain an+1 from an. In this case, if lim an = L and
an+1 = f(an), then we must have that L = f(L), which enables us to find the value of the limit if
we first know that the limit exists. To answer this question, we often use the Monotonic Sequence
Theorem, which states that a bounded, monotonic sequence converges.
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Numerical Series

A series is obtained from a sequence {an} by adding the terms:
∑
an = a1 + a2 + · · ·+ an + · · · is

the series associated with the sequence {an}. While we cannot compute the infinite sum directly,
we can compute the partial sums sn = a1 + a2 + · · ·+ an and check for convergence of this new
sequence {sn} as→∞. If it converges to the limit s, we say that the series converges with sum
s, and write

∑
an = s. If the sequence of partial sums fails to converge, we say that the series∑

an diverges.
Below is a strategy for determining if a series converges:

1. Is the series one of the basic types?

• Geometric series:
∑∞

n=1 ar
n−1 or, equivalently,

∑∞
n=0 ar

n, converges to a
1−r when

|r| < 1 and diverges when |r| ≥ 1.

• p-Series:
∑∞

n=1
1
np

converges if p > 1 and diverges when p ≤ 1.

2. Test for Divergence: If limn→∞ an 6= 0, then
∑
an diverges.

3. Classify:

• does an involve factorials, products, and/or quotients? try the Ratio Test (RT)

• is it alternating? use the Alternating Series Test (AST)

• does it look like a geometric or p-series? try the Comparison Test (CT) or Limit
Comparison Test (LCT);

•
∑
f(n) converges if and only if

∫∞
1 f(x) dx converges (Integral Test).

Power Series

Next we introduced power series, i.e., series of the form
∑∞

n=0 = cnx
n. One important

example of a power series that we studied is the geometric power series:
∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·+ xn + · · ·

For x within the radius of convergence R, rules of polynomials also apply to power series,
e.g., addition, multiplication, and term-by-term differentiation and integration.

The most important class of examples of power series are the Taylor series for functions. The
Taylor series of the function f about a is

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n.

For the special case a = 0, we obtain the Maclaurin series for f at a:

f(x) =

∞∑
n=0

f (n)(0)

n!
xn.

You are responsible for knowing the following Maclaurin series, both of which are convergent
for all real numbers x:

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

and

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

8


