#### Obtaining Summary Statistics with SPSS

Math 260

## Open the New York Travel Times data from Exercise 2.2

• File eg02-03.sav.

| 💼 eg02-  | -03.sav [DataSet6] · |                |           |                  |
|----------|----------------------|----------------|-----------|------------------|
| File     | View Data Transfor   | m Analyze      | Graphs Ut |                  |
| 🗁 🔲      | 兽 📴 🛧 🏓 🖁            | = <b>!? /4</b> | ▲ ■       |                  |
| 1 : minu | tes                  | 10             |           |                  |
|          | minutes              | var            | var       |                  |
| 1        | 10                   |                |           |                  |
| 2        | 30                   |                |           |                  |
| 3        | 5                    |                |           | Your data should |
| 4        | 25                   |                |           | have n=20 rows   |
| 5        | 40                   |                |           |                  |
| 6        | 20                   |                |           |                  |
| 7        | 10                   |                |           |                  |
| 8        | 15                   |                |           |                  |
| 9        | 30                   |                |           |                  |
| 10       | 20                   |                |           |                  |
| 11       | 15                   |                |           |                  |
| 12       | 20                   |                |           |                  |

#### **Explore Procedure**

• Select Analyze...Descriptive Statistics...Explore.



#### Complete the Explore Dialog Box



## The Statistics Dialog Box



## The Plots Dialog Box

"Factor levels together" allows comparing subgroups based on a factor.

conditions.



#### **Output: Case Processing Summary**

• Provides a quick check on sample size and missing values.

| Case Processing Summary |       |         |     |         |       |         |  |  |  |
|-------------------------|-------|---------|-----|---------|-------|---------|--|--|--|
|                         | Cases |         |     |         |       |         |  |  |  |
|                         | Valid |         | Mis | sing    | Total |         |  |  |  |
|                         | N     | Percent | Ν   | Percent | Ν     | Percent |  |  |  |
|                         | 20    | 100.0%  | 0   | .0%     | 20    | 100.0%  |  |  |  |

#### **Output: Descriptives**

Descriptives

|                                                             | Statistic Std. Error                                                   |
|-------------------------------------------------------------|------------------------------------------------------------------------|
| Mean                                                        | 31.25 4.892                                                            |
| 95% Confidence Lower Bound<br>Interval for Mean Upper Bound | 21.01<br>41.49<br>0ne-sample t-<br>confidence ntervals<br>will be used |
| 5% Trimmed Mean                                             | 29.72 extensively later in                                             |
| Median                                                      | 22.50 the course.                                                      |
| Variance                                                    | 478.618                                                                |
| Std. Deviation                                              | 21.877                                                                 |
| Minimum                                                     | 5                                                                      |
| Maximum                                                     | 85                                                                     |
| Range                                                       | 80                                                                     |
| Interquartile Range <u>= IQR</u>                            | 29                                                                     |
| Skewness                                                    | 1.040 .512                                                             |
| Kurtosis                                                    | .330 .992                                                              |

#### **Output: Percentiles**

**Ignore:** This definition will often give percentiles markedly different from the definition in our text.

Percentiles

|                                   | Percentiles |       |       |       |       |       |       |
|-----------------------------------|-------------|-------|-------|-------|-------|-------|-------|
|                                   | 5           | 10    | 25    | 50    | 75    | 90    | 95    |
| Weighted<br>Average(Definition 1) | 5.25        | 10.00 | 15.00 | 22.50 | 43.75 | 64.50 | 84.00 |
| Tukey's Hinges                    |             |       | 15.00 | 22.50 | 42.50 |       |       |

**Preferred:** Tukey's Hinges are very close to the Q1, median, and Q3 we have discussed in class.

**Footnote:** When *n* is odd, Tukey's hinges include the median as part of each half of the data set when finding the quartiles. Hence, Tukey's hinges may differ slightly from the quartiles as defined in our text when *n* is odd. They should agree when *n* is even. The median will always agree with our text's method.

#### **Output: Extreme Values**

|                   | Extreme Values |   |             |                 |  |  |  |
|-------------------|----------------|---|-------------|-----------------|--|--|--|
| This just shows   |                |   | Case Number | Value           |  |  |  |
| the most extreme  | Highest        | 1 | 13          | 85              |  |  |  |
| at the high and   |                | 2 | 15          | 65              |  |  |  |
| are <b>not</b>    |                | 3 | 17          | 60              |  |  |  |
| necessarily       |                | 4 | 18          | 60              |  |  |  |
| outliers or event |                | 5 | 20          | 45              |  |  |  |
| unusual values.   | Lowest         | 1 | 3           | 5               |  |  |  |
|                   |                | 2 | 7           | 10              |  |  |  |
|                   |                | 3 | 1           | 10              |  |  |  |
|                   |                | 4 | 16          | 15              |  |  |  |
|                   |                | 5 | 14          | 15 <sup>a</sup> |  |  |  |

a. Only a partial list of cases with the value 15 are shown in the table of lower extremes.

**Note:** This section is used mostly to check for data errors. Use the boxplot to check for values that meet our definition of outliers (more than 1.5 IQRs from the box).

#### **Output: Stemplot**



**Note**: The way SPSS defines the stems and leaves is automatic. Unfortunately, this cannot be changed. In any case, stemplots should only be used for small data sets where they can reasonably be made by hand. For larger dataset, histograms are preferred.

#### Output: Boxplot



## Notes

- Histogram output is not shown here as it was discussed in the Intro to SPSS help sheet.
- Another example follows to illustrate subgroup analysis.
- Open the cars.sav file again and explore weights by country of origin.

# Find and Open the Cars.sav data set from my <u>SPSS data directory</u>

| 🖬 cars.s  | av [DataSet | 1] - SPSS Dai | ta Editor     |                |              |        |        |          |           | × |
|-----------|-------------|---------------|---------------|----------------|--------------|--------|--------|----------|-----------|---|
| File Edit | View Data   | Transform Ar  | halyze Graphs | : Utilities Ad | d-ons Window | / Help |        |          |           |   |
| 🖻 🖬 d     | 9 🖽 🕈       | 🔶 🗽 🛛         | 斜情的           | i 🖩 🗗 ا        | 🔊 🖗 🕽        |        |        |          |           |   |
| 1 : mpg   |             | 18            |               |                |              |        |        |          |           |   |
|           | mpg         | engine        | horse         | weight         | accel        | year   | origin | cylinder | filter_\$ | ~ |
| 1         | 18          | 307           | 130           | 3504           | 12           | 70     | 1      | 8        | 0         |   |
| 2         | 15          | 350           | 165           | 3693           | 12           | 70     | 1      | 8        | 0         | _ |
| 3         | 18          | 318           | 150           | 3436           | 11           | 70     | 1      | 8        | 0         |   |
| 4         | 16          | 304           | 150           | 3433           | 12           | 70     | 1      | 8        | 0         |   |
| 5         | 17          | 302           | 140           | 3449           | 11           | 70     | 1      | 8        | 0         |   |
| 6         | 15          | 429           | 198           | 4341           | 10           | 70     | 1      | 8        | 0         |   |
| 7         | 14          | 454           | 220           | 4354           | 9            | 70     | 1      | 8        | 0         |   |
| 8         | 14          | 440           | 215           | 4312           | 9            | 70     | 1      | 8        | 0         |   |
| 9         | 14          | 455           | 225           | 4425           | 10           | 70     | 1      | 8        | 0         |   |
| 40        | 4.5         | 200           | 400           | 2050           | 0            | 70     |        | 0        | 0         |   |

Click on the variable view to get more information about the variables from the labels.

#### Complete the Explore Dialog Boxes



#### **Explore** Output

Extensive output for each subgroup (not shown)

At right is the boxplot for weight by country of origin.

American cars were clearly heaviest.



## **Other Procedures**

- Analyze...Descriptive Statistics has other useful procedures for summary statistics:
  - Descriptives: extensive statistics if no subgroups or plots are needed.
  - Frequencies: frequency table and statistics, especially for discrete data (small number of possible values).
- Analyze...Compare Means...Means is also good for a concise summary of subgroups.
- Experiment and see what you prefer!
- Ask questions if you have problems.