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Thermal physiology integrated 
species distribution model predicts 
profound habitat fragmentation 
for estuarine fish with ocean 
warming
Akila Harishchandra 1, Huijie Xue 2, Santiago Salinas 3 & Nishad Jayasundara 4*

Species distribution models predict a poleward migration for marine ectotherms with ocean 
warming. However, a key limitation in current species distribution models (SDM) is that they do not 
account for population-specific heterogeneity in physiological responses to temperature change 
resulting from local adaptations and acclimatization. To address this gap, we developed a novel, 
Physiology Integrated BioClimate Model (PIBCM) that combines habitat-specific metabolic thermal 
physiological tolerance of a species into a bioclimate envelope model. Using a downscaling approach, 
we also established a fine-resolution coastal sea-surface temperature data set for 2050–2080, that 
showed a high degree of location-specific variability in future thermal regimes. Combining predicted 
temperature data with the PIBCM model, we estimated habitat distribution for a highly eurythermal 
intertidal minnow, the Atlantic killifish (Fundulus heteroclitus), a species that likely presents a best-
case-scenario for coastal vertebrates. We show that the killifish northern boundary shifts southwards, 
while distinct habitat fragmentation occurs in the southern sub-population (due to migration of 
adjacent fish populations to the nearest metabolically optimal thermal habitat). When compared to 
current SDMs (e.g., AquaMaps), our results emphasize the need for thermal physiology integrated 
range shift models and indicate that habitat fragmentation for coastal fishes may reshape nursery 
habitats for many commercially and ecologically important species.

Rising global ocean temperature will profoundly shift habitat distribution patterns for aquatic ectotherms. This 
has generated significant interest in predictive species distribution models (SDMs)1–3 to infer habitat suitability 
and range by combining species’ spatial extent with environmental  data4,5. Climate envelope  modeling6 is a 
SDM technique that uses a species’ present geographical distribution to determine its environmental niche and 
to predict the re-distribution patterns based on future climatic  conditions7.

There are two key limitations in correlative species distribution models. First, most models consider the mini-
mum and maximum habitat temperatures of the entire population range as the upper and lower thermal limits of 
a given population, without accounting for the local adaptation of sub-populations8,9. Secondly, existing models 
do not consider species’ capacity to modify their thermal physiological properties, i.e.,  acclimatization10–13. 
Hybrid correlative models have addressed some of these  limitations14–16 by integrating thermally dependent 
phenotypic parameters (e.g., development threshold for  larvae16, growth rates, and clearance  rate14) into model 
predictions). These approaches still do not consider within-species physiological variation, (e.g., local thermal 
profile dependent organismal physiological acclimation capacity) at a high spatial resolution.

Here, we postulate that using fundamental cellular physiological processes (e.g., energy metabolic rates) can 
yield more accurate predictions of a population’s response to changing thermal habitats than whole-organism 
parameters like growth rate. Aerobic scope—the absolute difference between the maximum metabolic rate 
(MMR) and routine metabolic rate (RMR)—is a highly thermally-dependent parameter, that governs a species’ 
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reproductive success, growth, survival, and  biogeography11,17–22. This notion is captured in the oxygen and 
capacity-limited thermal tolerance (OCLTT)  framework19,20,23,24, which indicates that declining aerobic perfor-
mance measured in terms of aerobic scope (AS) results in a thermal limitation of ectotherms at both ends of the 
thermal envelope. Despite criticism of the overall  framework25, the highest level of aerobic scope is considered 
to be tightly linked to optimum  performance26. Studies have integrated these concepts to predict the future 
metabolic changes in terrestrial and aquatic ectotherms with global  warming27,28, and analyses on predicting 
species range shifts are lacking.

Here, we propose a novel framework to integrate the thermal plasticity of aerobic metabolism into a bioclimate 
envelope model and predict range shifts of marine ectotherms at a high spatial resolution. The central premise 
of our model is that a marine ectotherm maintains its routine metabolic rates within a certain habitat tempera-
ture range (at the climatological averaged minimum and maximum habitat temperature of the given location, 
i.e.,  T1 and  T2 in Fig. 1) in its current thermal environment, where it can sustain the highest possible aerobic 
scope at that location. Changes in the current thermal environment could reduce the optimum aerobic scope 
(explained in the OCLTT theory), leading to a habitat range shift unless the organism acclimates to the rising 
habitat temperatures. In this study, we hypothesized that the routine metabolic rates range (the range between 
routine metabolic rates calculated at the minimum and maximum habitat temperatures; defined as Metabolic 
Rate Range—MRR, Fig. 1) is a representative parameter of the optimum aerobic scope in a given location for a 
marine ectotherm. In other words MRR is a proxy for aerobic scope range in a given location. We determined 
MRR in a given location by calculating the absolute difference between routine metabolic rates at the climato-
logical maximum and minimum habitat temperatures in that location over the last 37 years (Fig. 1). For this, we 
use the Metabolic Theory of Ecology equation (MTE)29,30, which explains the thermal dependence on aerobic 
metabolism accounting for body size and environmental temperature (Eq. 1).

Here, B is resting/routine metabolic rate, bo is an empirically derived taxon-specific normalization constant 
(8.617 ×  10–5 eV/K), M is body mass, E is the averaged enzyme activation energy in eV, K is Boltzmann constant, 
and T is the habitat temperature in Kelvin. Importantly, the averaged enzyme activation energy (E) is the ther-
mally dependent physiological variable that can be modified through acclimation, developmental, transgenera-
tional plasticity, and/or local adaptation. Although it was initially assumed a universal temperature dependence 
for E, indicating that it is constant within a taxonomic group (e.g., 0.43 for fish)29, ectotherms may modulate 
their E  value31,32. Accordingly, here we posit that under thermal stress ectotherms may modify E to maintain a 
constant MRR in the current habitat.

(1)B = boM
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Figure 1.  The physiological theory underpinning physiology integrated bioclimate envelope model. 
Conceptual depiction of metabolic rate range (MRR) used to integrate Atlantic killifish thermal tolerance into 
the physiology integrated bio-climate model. Theory predicts that the routine metabolic rate (blue line) of an 
ectothermic teleost exponentially increases with the increasing temperature while the maximum metabolic 
rate (brown line) plateaus with increasing temperature and that the ideal thermal window  (T1 –T2) is where 
aerobic scope (difference between the maximum and routine metabolic rates) is maximized. We postulate 
that to maintain maximum aerobic scope following an increase in temperature, a fish from a given habitat will 
modify their thermal physiological properties to stay within a certain routine metabolic rate range (MRR—the 
difference in routine metabolic rates between  T1 and  T2) (Created with BioRender.com).
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To develop our physiology-integrated bio-climate model (PIBCM), we first tested the species specificity of 
the E value across a range of fish species. We show that this value is highly species-dependent and sensitive to 
the population’s local thermal envelope. We then simulated metabolic rate sensitivity to E in the MTE equation 
to demonstrate that metabolic rates and the metabolic rate ranges shift with E value changes. Then we quanti-
fied the habitat range shift between 2040–2069 and 2070–2099 for a highly eurythermal intertidal minnow, the 
Atlantic killifish (Fundulus heteroclitus). We calculated the current MRR using climatological monthly minimum 
and maximum sea surface temperature (SST) data over the last 37 years for killifish in their current local habitat 
at a resolution of 0.5°. We parameterized the model for the two subspecies of Atlantic killifish that live along the 
North American East  Coast33,34 (Fig. 2). The southern population is more heat tolerant (7–31 °C range) than the 
northern population (− 1.4 to 21 °C range)33, and the daily and seasonal temperature fluctuations vary widely 
between  populations33,35. Thus, we calculated E values for a range of acclimation temperatures for northern and 
southern killifish based on data from an extensive killifish acclimation  experiment36. To calculate MRR values 
associated with future projects, we substituted contemporary SSTs with predicted SSTs based on a novel coastal 
SST dataset we developed for the 2050s and 2100s. We implemented a downscaling approach built on averaging 
three coupled model intercomparison project phase 5 (CMIP5) model outputs (Representative Concentration 
Pathways (RCP)2.6,4.5,8.5; Supplementary Table S1). Subsequently, the model allowed a fish population in a 
given habitat (0.5° grid cells) to remain in the same grid if the fish can modulate the E value at the predicted 
future ocean temperature. If not, the model will find the nearest grid location with the same or lesser MRR as 
the best habitat for that given fish population to relocate with the ocean warming.

To our knowledge, this is the first study to integrate thermal physiological acclimation into SDMs, and our 
use of an eurythermal species like the killifish could represent a best-case scenario for other coastal and estuarine 
fishes in response to future warming.

Results
Species-specific biochemical activation energies—E values. Species-specific E values for 19 teleost 
fishes (five freshwater, seven marine, four brackish, and three euryhaline fish) were calculated using published 
standard or routine metabolic rates (SMR/RMR) (Table 1 and Fig. 3). E values were highly species-specific and 
ranged from 0.23 (mosquitofish, Gambusia affinis) to 0.96 eV (Nile tilapia, Oreochromis niloticus), and depends 
on acclimation temperature (Table 1 and Fig. 3). The mean E value calculated in our study (0.55 eV ± 0.17) 
was lower than previous estimations for all taxa (0.62 eV) and higher than fish-specific E value (0.433 eV)29. 
Within-species differences in E value were clearly reflected in comparisons between northern and southern kil-
lifish subpopulations, confirming that acclimation and local adaptions significantly alter these  values36, (Table 1). 
Acclimated and acutely exposed northern Atlantic killifish E values were lower than that of the Southern popula-
tions. Overall, these data demonstrate the species specificity of the E value and its dependence on the popula-
tion’s thermal history.

Sensitivity analysis. To determine the effects of different E values on the metabolic rate and metabolic 
rate range of a given organism, we examined the relationship between the E value and metabolic rate based 
on a sensitivity analysis of the MTE equation. Hypothetical metabolic rates were calculated as a function of 
temperature (0–40 °C) and body mass (1–1000 g) for E values between 0.01 and 1 eV. Metabolic rate can range 
from − 10.95 to 9.6 (log10 mW) (Supplementary Fig. S1A). As expected from the MTE equation, a small varia-
tion (e.g., 0.1 eV) in the E value resulted in a 70–40-fold change in metabolic rate across the temperature range 

Figure 2.  Atlantic killifish probability habitat distribution within the native range. (Source: AquaMaps). The 
figure was created using m_map toolbox v1.4 (https:// www. eoas. ubc. ca/ ~rich/ map. html) in MATLAB version 
R2022a (University of Maine academic license 358411) (https:// www. mathw orks. com/).

https://www.eoas.ubc.ca/~rich/map.html
https://www.mathworks.com/
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used for metabolic rate calculations (0–40 °C) (Supplementary Fig. S1A). Metabolic rates generally increased 
with increasing temperature and body size as expected, but the changes in the E value had the greatest impact 
on metabolic rates (Supplementary Fig. S1B,C). The effect of size (weight) on metabolic rate was highest at very 
small size ranges (~ 1 g–100 g), and this effect decreased as the animals got larger (Supplementary Fig. S1B). As 
such, the impact of a 0.1 eV change in the E value on metabolic rate is equivalent to a 70-fold change in size for 
a given organism. For a 10 g fish, the effect of temperature on metabolic rate was minimal at higher E values but 
increased with increasing E values, i.e., the slope of the line between metabolic rate and body mass decreased 
with decreasing E values (Supplementary Fig. S1C). Calculated metabolic rate ranges (MRR) between two con-
secutive temperatures (e.g., 0–2 °C, 2–4 °C, 4–6 °C) increased linearly (Supplementary Fig. S1D), except for the 
MRR calculated at the lowest E value (0.01 eV).

Overall, these analyses confirm that metabolic rate is highly sensitive to the E value and metabolic rates of 
organisms maintaining higher E values are most sensitive to their habitat temperature. Killifish E values range 
between 0.5 and 0.7 eV (Table 1), suggesting moderate thermal sensitivity of metabolic rate, especially in the 
Northern populations. Furthermore, at this range of E values, MRR increases with increasing temperature (e.g., 
MRR is higher for a fish at 20–22 °C compared to a fish at 18–20 °C). This supports the notion that killifish may 
adjust their E value to return to their optimum MRR if habitat temperatures were to increase.

Contemporary coastal SST variability in the study area. As expected, climatological mean (1982–
2018) SST along the North American coastline showed a distinct latitudinal gradient (Fig. 4A). The highest and 
lowest mean SSTs (28.19 and − 1 °C) were recorded for 20.25 N (Florida Keys) and 59.75 N (Newfoundland and 
Labrador coast) respectively. Within the native Atlantic killifish habitat distribution (28–52 N), climatological 
mean SST extended from 1.54 to 24.29  °C. Location-specific climatological mean SST range (the difference 

Table 1.  Summary of the species-specific E values calculated for 19 fish species. Fish from the same species 
may have different E values depending on the experimental conditions used to estimate the fish’s routine 
metabolic rates. Least square regression was applied to regress the natural log-transformed fish routine or 
standard metabolic rates with the inverse temperature. *F-Fresh water. ℾ B-Brackish water. ¶ M-Marine.

E value (eV) R2 P Experiment temperature (°C) Mean Weight (g) Environment References

Redband Trout

0.59 0.57  < 0.001

12,15,18,21,24

1.14

F* 650.58 0.53  < 0.001 2.41

0.56 0.49  < 0.001 3.4

Goby
0.32 0.28  < 0.001

15,22,28,33,36
1.15

M¶,  Bℾ 66

0.61 0.3  < 0.001 0.73

Black sea bass
0.69 0.74  < 0.001 24,27,30 265.6

M 67

0.56 0.87  < 0.001 12,17,22,27,30 375

Mosquito fish
0.31 0.04 0.0052 24.8,29.6,34.9,35.5,37.1 50.57

F, B 68

0.23 0.02 0.062 19.2,22.4,23.7,27.6,29.9 70.38

Nile Tilapia
0.96

0.95
 < 0.001

19,22,25,28,31
50

F, B 69

0.86  < 0.001 200

Atlantic Killifish

0.6 0.85  < 0.001

5,10,15,20,25,30,33

4.58

M, B, F 36
0.73 0.81  < 0.001 6.14

0.51 0.9  < 0.001 6.26

0.6 0.91  < 0.001 6.77

Atlantic Salmon 0.55 0.9  < 0.001 3,8,13,18,23 443.77 M, B, F
70

Lump fish 0.37 0.54  < 0.001 3,9,15 310.21 M

Ballan Wrass 0.62 0.14  < 0.001 5,10,15,20,23 162.59 F

71
Roach 0.6 0.24  < 0.001 5,10,15,20,23 63.76 B, F

Vendace 0.64 0.4  < 0.001 4,8,15 30.78 M, B, F

Stechlin cisco 0.54 0.44  < 0.001 4,8,15 16.15 F

Polar cod 0.33 0.42  < 0.001 0,3,6,8 16 M
72

Atlantic cod 0.4 0.68  < 0.001 3,8,12,16 40.76 M

Atlantic cod
0.46 0.63  < 0.001 8,20 73

M 73

0.37 0.51  < 0.001 12,23
64.6

Bone fish 0.37 0.1 0.013 22,35 M 74

Quingbo 0.4 0.71  < 0.001 10,15,20,25,30 2.87 F 75

Thorny Skate 0.7 0.33 0.0018 5,9,13 1.56 M
76

Clearnose Skate 0.44 0.26 0.01 20,24,28 1.22 M

Snakehead
0.81 0.95  < 0.001

15,20,25,30,35
4.4

F 77

0.72 0.91  < 0.001 4.42
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between the maximum and minimum mean SST for a given location) spanned between 8 and 24.3 °C in the 
current killifish habitats (between 28 and 52 N), indicating a potential preference for thermally variable envi-
ronments (Fig. 4B). The highest SST range (24.29 °C) was recorded in the Chesapeake Bay, while the SST range 
experienced by killifish was generally higher for the populations in the Delaware Bay region, and the southern 
Gulf of St. Lawrence coastal region.

The climate model projected coastal SST variability. Our novel downscale approach to obtaining 
predicted SST showed a distinct latitudinal thermal gradient similar to the contemporary pattern and predicted 
a positive mean SST anomaly between contemporary and future periods (the 2050s and 2080s) under all RCP 
scenarios (Fig. 4C,D) and Supplementary Fig. S2). The location-specific SST range (the difference between the 
maximum and minimum climatological mean SST for a given location) in the 2050s and 2080s also showed a 
similar pattern to its contemporary distribution (Fig. 4E,F, and Supplementary Fig. S3). For the 2050s (RCP 2.6) 
and 2080s (RCP 8.5), the predicted highest SST range was 25.52 °C and 27.34 °C respectively, and was recorded 
in the Chesapeake Bay region (38.75 N,76.25 W) (Fig. 4E,F). Overall, our downscaled model output predicted 
an increasing SST range.

Atlantic killifish thermal envelope-specific E values. Based on location-specific SST ranges, we 
determined thermal habitat envelopes for killifish. The killifish metabolic rates we adopted for our study were 
estimated at a temperature array within 5  °C intervals (5,10,15,20,25,30 and 33  °C36. Therefore, we rounded 
up the long-term-averaged minimum and maximum habitat temperatures to the nearest 5 °C (Supplementary 
Table S2) to define all the possible killifish thermal envelopes. Essentially a given thermal envelope reflects the 
maximum and minimum temperatures of a given location along the current killifish habitat. We estimated nine 
thermal envelopes for the Northern subpopulations’ habitat range, and six thermal envelopes for the Southern 
subpopulation (Supplementary Table S3) and found three thermal envelopes (5–25 °C, 5–30 °C, and 10–30 °C) 
to be common for both populations. Six thermal envelopes (5–10 °C, 5–15 °C, 5–20 °C, 10–15 °C, 10–20 °C, and 
10–25 °C) were unique to the Northern population range, while 15–30 °C, 20–30 °C, and 25–30 °C were unique 
to the Southern population range. E values were estimated for each of the thermal envelopes, and we found E 
values for the common thermal envelopes were higher in the Southern subpopulation than in the Northern sub-
population (Supplementary Table S3), further confirming that Southern subspecies are more thermally sensitive 
than the Northern subspecies. We then used the same approach to calculate thermal envelopes and their respec-
tive E values based on the predicted future temperatures. Overall, the metabolic rates, and respective metabolic 
rate ranges in each grid varied as a function of the thermal envelope and the envelope-specific E values. The 

Figure 3.  Summary of the species-specific E values calculated for 19 fish species. Same fish species may have 
different E values depending on the experimental conditions and temperature ranges. The solid lines depict the 
experimental temperature range, and the blue legends show the temperature values. Fish species name and the 
estimated E values (in eV) are displayed in the pale red boxes (Created with BioRender.com).
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Figure 4.  The contemporary and the climate model projected future sea surface temperature (SST) variability 
along the East Coast of North America (A) Climatological mean SST distribution along the North American 
East coastline during the contemporary (1982–2018) period (Copernicus data). (B) The SST range (Difference 
between maximum and minimum SST) along the same region and period. (C) SST anomaly (difference between 
the future and contemporary SST distribution) in the 2050s (RCP 2.6) (D) SST anomaly in the 2080s (RCP 8.5) 
(E) The SST range along the North American coastline during the 2050s (RCP 2.6) and (F) 2080s (RCP 8.5). 
Visualizations of all RCP scenarios are in the supplemental section (Supplementary Figs. 2 and 3). Figures were 
created using m_map toolbox v1.4 (https:// www. eoas. ubc. ca/ ~rich/ map. html) in MATLAB version R2022a 
(University of Maine academic license 358411) (https:// www. mathw orks. com/).

https://www.eoas.ubc.ca/~rich/map.html
https://www.mathworks.com/
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yearly E value variance across the Atlantic killifish native range during the contemporary period showed a higher 
variance at the northern and southern ends (Fig. 5) and an evenly lower variance in the middle part. Notably, 
the southern habitat range showed the highest yearly E variance (Fig. 5) and the habitat fragmentation during 
the 2080s as predicted in our model.

Predicted contemporary and future metabolic rate range (MRR) distribution. MRR, which is 
determined as a function of the population-specific E-value and contemporary or predicted future temperature 
change, is the deterministic physiological parameter in the climate envelope model. MRR within the Atlantic 
Killifish’s contemporary habitats ranged from − 7 to − 2 log10 mW. The highest killifish MRR was observed in 
the Northern limit of the contemporary habitat boundary around Nova Scotia and the surrounding coast (44 to 
52 N) (Supplementary Fig. S4). In addition, patches of high MRR (~ − 2 log10 mW) were also observed within 
the contemporary habitat range (Supplementary Fig. S4). Overall, our downscaled SST data predicts three dis-
tinct clusters of MRR that can be categorized into low (− 8.5 to − 7 log10 mW), moderate (− 6 to − 5 log10 mW) 
and high (− 4 to − 3 log10 mW) MRR regions (Supplementary Fig. S5). With increasing temperatures in the 
2050s (RCP 2.6) scenario, we observe a clear shift in these clusters, indicating an expansion of high MRR regions. 
This is particularly prominent in Nova Scotia, where the high MRR region expands its spatial extent. The coastal 
zone between 52 and 60 N is predicted to become a region with minimum MRR (~ − 10 to − 7 log10 mW) under 
future RCP scenarios.

PIBCM predicted Atlantic killifish habitat shifts. Three model conditions were implemented to pre-
dict the Atlantic killifish future habitat ranges (see “Methods” section). The first criterion is that if the maximum 
habitat temperature is less than 32 °C (physiological break temperature used for killifish in this model) and if 
the future maximum temperature is higher than the contemporary maximum temperature but future MRR is 
lower than current MRR, the fish population will remain in the same grid. Accordingly, PIBCM predicts that fish 
populations in several regions, including Newfoundland, Nova Scotia, New Brunswick, Cape Cod, Cape Hat-
teras, and the northern Florida coast will continue to stay in their current grids (Fig. 6A,B). In the Nova Scotia 
region (just south of Newfoundland), the number of killifish populations that met this criterion increased with 
time and the severity of RCP scenarios (Fig. 6C,D). This outcome is a result of the potential capacity of killifish 
to modify MRR by regulating their E value, even though the future maximum temperatures are higher than 
the contemporary maximum temperatures. The second criterion is that if the maximum habitat temperature is 
less than 32 °C and the future maximum temperature or MRR is lower than their contemporary values, the fish 
population will remain in the same grid. However, no killifish grid location followed this condition. The third 
criterion was that if the future maximum temperature exceeds 32 °C or if the future maximum temperature and 
future MRR exceed contemporary values, then the killifish population will move to the nearest grid locations 
with equal or lower MRR relative to their current habitat. ~ 78% of the grid cells representing killifish habitats 
followed this model condition (Supplementary Fig. S6). Under RCP 8.5, 8% of habitat grid cells exceeded the 
break temperature of 32 °C while 1% did so under RCP 4.5 in the 2080s (Supplementary Fig. S6D–F)).

We observed a combination of outcomes such as population shifts to their adjacent grid locations, habitat 
range contractions, and habitat fragmentations (Fig. 6A,B and Supplementary Fig. S7). We did not detect a clear 
northward range shift, and in fact, the northernmost killifish populations may shift to nearby southern grid loca-
tions (Fig. 6C,D). Under the RCP 2.6 2050s scenario, small-scale habitat fragmentations were predicted along the 

Figure 5.  Yearly Atlantic killifish E value variation  (103) during the 1982–2018 period. Respective E values (eV) 
for each year’s maximum and minimum SSTs along the Atlantic killifish native habitat range were calculated 
using Healy and Schulte,2012 data. The figure was created using m_map toolbox v1.4 (https:// www. eoas. ubc. 
ca/ ~rich/ map. html) in MATLAB version R2022a (University of Maine academic license 358411) (https:// www. 
mathw orks. com/).

https://www.eoas.ubc.ca/~rich/map.html
https://www.eoas.ubc.ca/~rich/map.html
https://www.mathworks.com/
https://www.mathworks.com/
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coastline (mainly due to the exceeding future MRR than the contemporary values), with the most pronounced 
changes in the southern part of the Gulf of Maine and the Cape Cod coast. The size of fragmentations widened 
in the 2080s and under different RCP scenarios. In particular, profound habitat fragmentations were observed 
for the Southern killifish subpopulations (Fig. 6B). This is a result of predicted habitat temperatures exceeding 
32 °C, where some Southernmost killifish populations may aggregate around ~ 28 N–30 N seeking thermal refugia 
(Supplementary Figs. S6A–D, and S7A–D).

To quantify the negative and positive predicted aggregations to a given grid location, we calculated the dif-
ference in probability of a given grid cell being occupied by killifish under future scenarios compared to the 
contemporary distribution (Fig. 7 and Supplementary Fig. S8). Some grid cells that served as thermal refugia for 
nearby fish populations exceeded the cumulative probability when the contemporary grid probabilities shifted 
with the ocean warming and the model was set to adjust the exceeded probability value to 1. As such, Fig. 7 shows 
that in the 2050s (RCP 2.6) and 2080s (RCP 8.5), the probability of killifish inhabiting a given site remains unim-
pacted for some sites along the east coast, while some sites show reduced probability with habitat fragmentations.

Comparison between AquaMaps and PIBCM predicted Atlantic killifish distribution. To com-
pare the PIBCM predictions with a traditional bio-climate envelope model, we simulated an AquaMaps model 

Figure 6.  Physiology integrated model predicted killifish future distributions for two climate projections 
(representative concentration pathway (RCP)) and the comparison with contemporary distribution. (A) Atlantic 
killifish distribution (probability) in the 2050s (RCP2.6) and (B) 2080s (RCP8.5). (C) The comparison between 
new model predicted Atlantic killifish distribution for the 2050s (RCP2.6) and (D) the 2080s (RCP8.5) with the 
native habitat range. The dark arrows in the figure D shows the southward migration of the killifish populations 
inhabiting the northern most grid with ocean warming. Habitat predictions and comparisons for other RCP 
scenarios and time are displayed in the supplementary section (Supplementary Fig. S7 and S8). Figures were 
created using m_map toolbox v1.4 (https:// www. eoas. ubc. ca/ ~rich/ map. html) in MATLAB version R2022a 
(University of Maine academic license 358411) (https:// www. mathw orks. com/).

https://www.eoas.ubc.ca/~rich/map.html
https://www.mathworks.com/
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for killifish distribution using climatological mean SST as the single environmental driver. According to Aqua-
Maps predictions, the Northern and Southern boundaries of the Atlantic killifish native habitat will be expanded 
during the 2050s and 2080s (all RCP scenarios). The minimum northward range expansion was predicted for the 
2050s (RCP2.6) and the maximum was in the 2080s (RCP8.5). The maximum range expansion was limited to the 
Canadian east coast at around 55° N. This contrasts with our PIBCM predicted habitat distributions, which show 
little northward expansion. When comparing the predicted population probability distribution by AquaMaps 
and PIBCM for a given RCP scenario (Supplementary Fig. S9), results showed contrasting likelihoods of killifish 
existence in a given habitat. Notably, as described earlier, the PIBCM model predicted habitat fragmentation, 
while AquaMaps did not (Supplementary Fig. S9A,B).

Discussion
Our PIBCM indicates a complex habitat pattern shift that may lead to a series of disconnected killifish popula-
tions along the North American coastline in the future (Fig. 6C,D and Supplementary Fig. S6). Notably, in con-
trast to the killifish habitat poleward expansion predicted in the traditional bio-climate model (e.g., AquaMaps), 
the PIBCM predicted aggregations to thermally optimal sites including shifts by the Northernmost killifish 
populations to their nearest Southern grids (Fig. 6D). These predicted future habitat distribution patterns are 
likely to occur both over multiple generations as well as potentially within the lifetime of a fish.

Our model emphasizes the importance of integrating physiological responses into species distribution models. 
Most of the current habitat modeling techniques match organisms’ contemporary environmental niche with the 
future environmental  conditions1,2 to predict future habitats but ignore organismal capacity to acclimatize. For 
example, a Generalized Additive Model that used SST as the primary parameter predicted an erroneous north-
ward migration of Calanus helgolandicus37, inferring the likely importance of integrating physiological responses. 
To this end, our approach provides a novel framework for integrating organismal physiological responses into 
species distribution models. Here, metabolic rate range (MRR) was considered the fundamental predictive unit 
that decides the physiological affinity of a given Atlantic killifish population to its geographical range. The cen-
tral premise of our model is that a marine ectotherm will maintain its routine metabolic rates within a certain 
range in its current thermal environment, to sustain the highest possible aerobic scope at that location. Instead 
of using aerobic scope directly, we used MRR for our calculations for several reasons. At the fundamental level 
of the model building, we considered a fish population in a given grid, maintains its optimum aerobic scope to 
inhabit the grid and the MRR (the difference between routine metabolic rates calculated at the maximum and 
minimum habitat temperatures) is a proxy of the maintained aerobic scope. Aerobic scope, the difference between 
the maximum and routine metabolic rates at a given temperature is considered a key physiological determinant of 
organismal fitness in a given habitat, and in this study, we postulated that the Atlantic killifish habitat probability 
in a given grid is linked to the grid-specific aerobic scope. However, the numerical calculation of aerobic scope 
is challenging across the temperature range we consider in our study, since there is no established mathematical 
equation to calculate maximum metabolic rates as a function of temperature. Therefore, we use the routine rate 
ranges calculated based on the MTE equation as a proxy for aerobic scope. This also enabled us to integrate the E 

Figure 7.  Comparison of Atlantic killifish habitat probabilities predicted in physiology integrated bio-climate 
model and AquaMaps model for two representative concentration pathway (RCP) scenarios. (A) Differences in 
the habitat probabilities predicted by the physiology integrated model and the traditional species distribution 
model (AquaMap) during the 2050s (RCP2.6) and 2080s (B) (RCP8.5). P(pibcm) is the predicted Atlantic 
killifish habitat probabilities by the physiology integrated model and P(aquamaps) means the predicted habitat 
probabilities by the AquaMaps model. Model comparisons for other RCP scenarios and times are displayed in 
the supplementary section (Supplementary Fig. S9). Figures were created using m_map toolbox v1.4 (https:// 
www. eoas. ubc. ca/ ~rich/ map. html) in MATLAB version R2022a (University of Maine academic license 358411) 
(https:// www. mathw orks. com/).

https://www.eoas.ubc.ca/~rich/map.html
https://www.eoas.ubc.ca/~rich/map.html
https://www.mathworks.com/
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value, which is indicative of the population-level biochemical capacity of ectotherms to acclimate to rising ocean 
temperatures. Additionally, although it is considered that organisms maintain their highest AS at the optimum 
temperature  (Topt), the laboratory-measured  Topt to some extent may not be correlated with the organism’s pre-
ferred functional habit  temperature38, and in several tropical fish species,’ optimum performance temperatures 
reflect more closely at the warmer end of their habitat temperature  range39, that showed the ambiguities underly-
ing the accurate estimation of the most appropriate temperature to determine the optimum habitat AS. Therefore, 
we anticipated that MRR provides a more robust physiological parameter to use as an indicator of optimum 
thermal range. Collectively, we posit here that, MRR serves as a useful deterministic physiological parameter, 
but further experiments are encouraged to prove its predictive capacity of species’ habitat distribution patterns.

We assumed that even with increasing SST, a fish population would remain in the same grid cell if future 
MRR is lower or equal to the current MRR if the fish can increase its E value through acclimation, developmental 
or transgenerational plasticity. Indeed, we show a wide range of E values for different teleost ectotherms, infer-
ring the critical role of thermal acclimation capacity and local adaptations likely to play in determining thermal 
 optimums40,41. Accordingly, the MRR calculations can serve as an informative physiological parameter that can 
be integrated into other bioclimate models as well as statistical species distribution modeling approaches such 
as generalized additive or linear models (GAM or GLM)2,42.

Our model relies on several key assumptions that warrant further experimental analyses. For example, the 
metabolic theory of ecology  (MTE29,30) equation and the oxygen capacity-limited thermal tolerance theory 
 (OCLTT19,20,23,24 are critical to our model. There are significant debates on  OCLTT25,43,44 and  MTE31,32 frame-
works. One widely debated aspect of MTE is the scaling exponent. Here, we used 0.75 as the mass scaling  factor45, 
although this value may depend on lifestyle, swimming mode, ambient temperature, and other environmental 
 variables46,47. Previous studies have shown that the killifish scaling exponent is ~ 0.7548, validating our approach. 
While species-specific scaling exponents should be considered in PIBCM in future studies, bioenergetic outcomes 
of acclimation and local adaptation to abiotic environmental variables including temperature, are likely to be 
reflected via changes in the E value as also depicted by our sensitivity analysis (Supplementary Fig. S1). Despite 
the ambiguities around MTE and OCLTT frameworks, the two key attributes we focused on, aerobic scope (AS) 
optimization within a thermal window and the kinetics of the E value, are generally established. Here, we assumed 
that a given population optimizes AS by maintaining a routine metabolic rate within a certain range by regulat-
ing thermodynamic effects on enzyme activation energy (E). Importantly, we deviated from the MTE equation 
by postulating that the E value is species-specific and depends on the thermal history of a given population. For 
example, Kinnison et al.49 demonstrated fluctuations in E values of locally adapted chinook salmon resulting 
in a counter-gradient variation between these populations. This is further inferred in our analysis of data from 
published literature on 19 different fish species shows that the E value ranges between 0.23 eV and 0.96 eV. 
Moreover, our sensitivity analysis confirmed that a 0.1 eV change in the E value can have a significant effect on 
metabolic rate output. We posit that changes in the E value reflect biochemical factors sensitive to environmental 
temperature changes. Therefore, acquired thermal tolerance following thermal acclimation or developmental 
plasticity can alter the E value, providing a quantifiable mechanistic parameter for our model. However, there 
is limited information on precise physiological factors driving the E  value50 and further research is warranted 
to examine a causal relationship between enzyme kinetic energy changes (e.g., enzymes involved in oxidative 
phosphorylation) and the whole organismal E value.

Based on E value calculations for killifish acclimated to 5–33 °C with 5 °C  intervals36, we predicted 12 differ-
ent thermal envelopes for Northern and Southern killifish populations (Supplementary Table S3). This thermal 
envelope calculation allowed us to consider several thermal ranges for the E-value calculations, thus enabling us 
to examine potential variation in the E value along the current habitat distribution while minimizing the effects 
of noise to some degree. This is likely an underestimation of the number of thermal envelopes, given that we 
rounded the climatological minimum and maximum temperatures to the nearest 5 °C to match the acclimation 
data (Supplementary Table S2). Further, a major dividing zone between the Northern and Southern Atlantic Kil-
lifish subpopulations was identified at approximately around 40 N, where the Hudson River enters the Atlantic 
 Ocean51. Studies also indicate a clear hybrid zone for the Northern and Southern subspecies; however, we did not 
account for this variation and demarcated 40 N as the dividing line between the two. To account for the different 
thermal physiological capacities of fish in the hybrid zone, we simulated the model using several latitudinal clinal 
values (39–41 N), but the final result for this region remained unchanged.

Inherent in our calculation is the assumption that killifish in a given thermal range are acclimated or locally 
adapted to their thermal range to optimize aerobic scope. Considering our calculations are based on lab-accli-
mated fish in 5 °C increments, further studies at a higher thermal resolution will help to determine more accurate 
thermal envelopes. Also, our model assumes that the E value of a given subpopulation is consistent across all 
Northern or Southern fish within the native range and remains an important area of research to explore. While 
these studies will increase the resolution of the habitat shift patterns, the overall predictions from our study on 
limited poleward movement and habitat fragmentation are likely to remain consistent.

The downscaled data from the IPCC CMIP5 project is novel and our high-resolution coastal thermal variabil-
ity addresses an important gap in our understanding of future temperature variability along the North American 
East Coast. We used a climate data interpolation method (Delta  method52 to downscale the coarser-resolution 
CMIP5 SST data (Supplementary Table S1). This method requires a higher resolution baseline climatology to add 
up the thin plate  splined53 delta values. World Ocean Atlas (WOA ~ 0.25° × 0.25°54) climatology data is a widely 
used baseline climatology, but coverage along the coastal zones is insufficient. Therefore, we developed a new 
climatology upscaling 0.05° × 0.05° Copernicus SST data to increase the data resolution along the coastline and 
reduce the data source biasness. As expected, downscaled data from CMIP5 showed that SST along the killifish 
habitat range will be higher than its contemporary values (Fig. 4C,D and Supplementary Fig. S2) and the anomaly 
increases with time and the RCP scenario. Dillon et al.27 concluded the importance of calculating metabolic 
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rates using high-frequency temperature data (daily temperatures) to reduce the fallacy of the averages. Here we 
used annual maximum and minimum SST data to calculate the location-specific metabolic rates by averaging 
the daily variations and the effect on the final model prediction is negligible. Our downscaled data also showed 
several coastal habitats that are likely to experience wide thermal fluctuations in the future compared to the 
contemporary period. For example, Chesapeake Bay is predicted to experience the highest SST variation during 
future periods as depicted in the downscaled SST product. Further, our predicted values on increased thermal 
variability in several important coastal habitats (e.g., the Chesapeake Bay, Southern Gulf of Maine), infer at-risk 
regions for inhabiting ectotherms.

SST is the only environmental parameter used in our model, while  AquaMaps55 uses five environmental 
parameters (SST, sea surface salinity, sea ice content, primary productivity, and distance from the coast), and 
other SDMs have used a number of environmental parameters. Nonetheless, our PIBCM model can be extended 
to include other variables that are also determinants of MRR. Oxygen limitation from increasing oceanic hypoxic 
events may directly impact  AS19,20,23 and the Metabolic Index (Φ)28 and mitochondrial respiration and mito-
chondria health  index56 could serve as parameters to integrate changing DO and/or temperature levels into the 
PIBCM. Further, the inclusion of key parameters such as food availability, current fish density, and fishing pres-
sures is critical for model accuracy and remains an important limitation in the current model.

Despite the limitations and important assumptions, our analysis on killifish presents a likely best-case scenario 
for coastal ectotherms and emphasizes the important role of acclimation and local adaptations that may play 
in determining the habitat shift  patterns10–12. As the warming global oceans are predicted to push the species’ 
preferred thermal envelopes  northward37, we demonstrate that aside from strict stenotherm (e.g., some Antarctic 
 notothenioids57), acclimation and local adaptions likely drive habitat fragmentations as well as aggregations, 
inter-subpopulation mixing, and genetic hybridizations for a coastal ectotherm. Species inhabiting lower latitudes 
experience habitat temperatures closer to their maximum tolerance limit, thus more likely to shift their current 
habitat ranges with the ocean warming (e.g., the wide habitat fragmentation predicted in this study for southern 
subpopulations of Atlantic killifish) than their northern conspecific species. Accordingly, certain regions of 
the North American coastline (e.g., Southern Gulf of Maine and Cape Cod coast) may serve as critical nursery 
habitats in the future while others may see significant declines in fish populations. Our PIBCM approach can 
estimate such habitats for economically important pelagic spices and indicate the critical need to incorporate 
thermal plasticity in population distribution models.

Materials and methods
Species-specific E value calculation. Species-specific E values were calculated using collected fish 
routine or standard metabolic rate data published between 2000 and 2018. Data available in the University of 
Maine Aquatic Science and Fisheries Abstract and Web of Science databases were used in this calculation. This 
study only considered the metabolic rate data of fish treated in three or more acute/acclimatory temperature 
 treatments58. Metabolic rate data collected as a function of temperature,  CO2, or Salinity were considered in the 
study after removing metabolic rate data collected at projected scenarios. Respective authors were contacted 
personally to obtain metabolic rate data unless data weren’t available online. Species-specific E values were cal-
culated using the Arrhenius-Boltzmann50 (Eq. 2) relationship considering its statistical thermodynamic robust-
ness for scaling metabolic rate variability with  temperature50.

Rb is the RMR/SMR, Ao is a constant, E is the averaged activation energy (eV), K is the Boltzmann constant, 
and T is the temperature (Kelvin). The relationship between ln ( Rb ) and 1/T was estimated using the least square 
regression method which preserves the statistical thermodynamic  robustness50 and the slope is equal to − E/K.

Sensitivity analysis. A sensitivity analysis was conducted to test the effect of temperature, body mass, 
and E value on the metabolic rate and metabolic rate range (MRR). The metabolic theory of ecology equation 
was used to calculate hypothetical metabolic rates for mass values ranging between 0.001 and 10 kg with 100 g 
intervals, E values from 0.01–1 with 0.1 intervals, and temperature values ranging between 0 and 40 °C with 5 °C 
intervals. 14.47 was used as the metabolic scaling component  (bo)29. Metabolic rates were recalculated for the 
same mass and E values, but a range of temperature values between 0 and 40 °C with 2 °C intervals to estimate 
the effect of temperature on MRR. MRR was calculated as the difference between metabolic rates at consecutive 
temperatures (e.g. 0–2 °C, 2–4 °C) at a given E and mass.

Atlantic Killifish habitat distribution data. Atlantic Killifish probability distribution data were down-
loaded from the AquaMaps (www. aquam aps. org). AquaMaps generates Atlantic Killifish native range probabil-
ity distribution (0–1) in 0.5° × 0.5° grid resolution (Fig. 1 and Supplementary Table S1).

Contemporary coastal Sea Surface Temperature (SST) data. High resolution (0.05° × 0.05° × daily) 
reprocessed global SST  data59 between 1982–2018 were downloaded from Marine Copernicus (https:// marine. 
coper nicus. eu) server for the model domain of 20–60 N and 100–54 W. Atlantic Killifish mostly inhabit estuar-
ies and salt  marshes33. Therefore, we assume that Atlantic killifish inhabits within the 0–10 m depth range and 
extracted SST data between 0 and 10  m depth contours using very high-resolution ETOPO2v2 bathymetry 
data (Supplementary Table S1) (National Geophysical Data Center) (https:// www. ngdc. noaa. gov/ mgg/ global/ 
relief/ ETOPO2/ ETOPO 2v2- 2006/ ETOPO 2v2/ netCDF/). Extracted SST data were upscaled to 0.5° to match the 
model resolution (0.5°) (Fig. 8A). Climatological monthly maximum and minimum SST per grid point were 

(2)Rb = Aoe
−E/KT

http://www.aquamaps.org
https://marine.copernicus.eu
https://marine.copernicus.eu
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ETOPO2v2/netCDF/
https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ETOPO2v2/netCDF/
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calculated by averaging 37 years of SST data. Grid-specific SST range was calculated as the difference between 
the maximum and minimum climatological monthly mean SSTs.

Downscaling the climate model projected SST data. Historical (1961–1990) and the future (the 
2050s (2040–2069), and the 2080s (2070–2099)) SST data were downloaded from three climate models of the 
Climate Model Intercomparison Project Phase 5 (CMIP5) and the Intergovernmental Panel for Climate Change 
(IPCC) (Supplementary Table S1) through ESGF data distribution center at (https:// esgf- node. llnl. gov/ proje cts/ 
cmip5/) representing three Representative Concentration Pathways (RCP 2.6,4.5, and 8.5). RCP considers three 
different emission scenarios, strong greenhouse gas mitigation (~ 2.6   Wm−2) by 2100 (RCP2.6), intermediate 
mitigation (~ 4.5  Wm−2, RCP4.5), and no mitigation (~ 8.5  Wm−2, RCP8.5)56. SST is expected to rise respectively 
in each RCP scenario which is ~ 1  °C relatively to 2006 in RCP2.6 and 2.4  °C compared to 2006 in RCP8.5. 
Most of the CMIP5 projects are based on ensemble calculations that have different initialization methods, initial 
states, and physical  details60. In the CMIP5, ensemble nomenclature is based on the rip nomenclature (r—reali-
zation, i—initialization, and p-physics). Among the available ensembles, we always used the first model ensem-
ble (r1i1p1) data in this study to reduce the complexity of the computational process.

The coarser resolution of the downloaded SST predictions (Supplementary Table S1) hindered comprehen-
sive estimation of the future SST variability along the North American coastline. Therefore, we downscaled 
the individual climate model data using the Delta  method52 to a 0.5° × 0.5° grid interval. This method takes the 
difference (Delta change) between the historical and future climatological SST of a given climate model, re-grid 
the difference to the same resolution of contemporary climatology, and adds it up to contemporary climatology. 
Here we developed contemporary climatology by calculating climatological monthly means of 0.5° × 0.5° gridded 
Copernicus SST data. Thin Plate Spline  Interpolation53 was applied to re-grid the delta change to the contempo-
rary climatology resolution. Delta change was calculated as the difference between the climatological monthly 
means of 2040–2069 (2070–2099) and the climatological monthly means of the same climate model’s historical 
(1961–1990) period. At last, downscaled individual model SST products were averaged to get the model mean 
SST prediction. The final climatological monthly mean SST product was used to calculate the projected mean 
annual, monthly minimum, and maximum SST per grid cell.

Metabolic Rate Range (MRR) calculation. We assumed that Atlantic Killifish in each 0.5° grid is a 
unique population that is locally adapted to maintain a constant MRR depending on the grid thermal envelope 
and the thermal envelope-specific E value. We used Atlantic Killifish routine metabolic rate (RMR) data pub-
lished in Healy and  Schulte36 to calculate the thermal envelope-specific E values. Healy and  Schulte36, recorded 
RMR data of seven groups of Atlantic Killifish from both north and south subpopulations, acclimated to a tem-
perature range of 5, 10, 15, 20, 25, 30, and 33 °C. For this, the maximum and minimum SST (current and future 
projected) values in each grid were rounded up to the nearest 5 °C (Supplementary Table S2). The experimental 
RMR values within the rounded temperature range were extracted from Healy and  Schulte36 and plotted as a 
function of assay temperature to determine the slope of the regression to calculate grid-specific E value as per 
the Arrhenius-Boltzmann equation. The maximum and minimum metabolic rates in each grid were determined 
using the MTE equation and the grid-specific E value to calculate the MRR using Eq. 3 (Fig. 8A). All calculations 
were conducted assuming fish body weight as 10 g.

(3)MRR = maximum routine metabolic rate−minimum routine metabolic rate

Figure 8.  Flow chart and the model algorithm used in Physiology Integrated Bio Climate Model (PIBCM). 
(A) Flow chart of the PIBCM data processing. Pale blue, green, and orange boxes respectively represent the 
physiological data source, physiological theories used in the study, and the data that feed into the PIBCM 
algorithm. (B) The PIBCM model algorithm (Created with BioRender.com).

https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
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We set the 40 N as the geographical cline between Northern and Southern Atlantic killifish populations. 
Therefore experimental RMR data collected using Northern Atlantic killifish subspecies were used to calculate 
E values in grids at or above 40 N and vice-versa. Healy and  Schulte36 explained that both fish subpopulations 
reached their peak metabolic performance at 30 °C and dropped at 33 °C. Accordingly, we selected 32 °C as the 
physiologically optimum break temperature.

AquaMaps model predictions for F. heteroclitus future distribution. AquaMaps model is regularly 
used as a reliable bio-climate envelope model to predict around 33,000 species’ current and future habitat distri-
butions, and its operational process is more efficient than the other statistical or machine learning species dis-
tribution models. Therefore, we chose AquaMaps as a baseline climate envelope model results to compare with 
our PIBCM model results. SST climate envelopes used in  AquaMaps55 were used to predict the Atlantic Killifish 
distribution in the 2050s and 2080s. AquaMaps uses a Relative Environmental Suitability (RES)56 method to 
predict species distribution considering several bio-climate indices with 5.63 °C, 7.74 °C, 21.97 °C, and 27.05 °C 
as the respective minimum, preferred minimum, preferred maximum, and maximum SST  envelopes6,55,61 to pre-
dict the distribution. Climatological mean SSTs from the three downscaled RCP scenarios were used to generate 
habitat predictions.

Physiology integrated bio-climate model (PIBCM) development. We assume Atlantic Killifish 
habitat probabilities determined (predicted probabilities by AquaMaps) in a single grid cell have been locally 
adapted to maintain constant MRR during the past 37 years. The fish population remains in the same location 
if the grid MRR in the 2050s or the 2080s is lower or equal to the historical MRR even though the grid-specific 
future SST exceeds its respective contemporary temperature. So, we implemented three basic model conditions 
to simulate Atlantic killifish future habitat ranges (Fig. 8B).

Model condition 1: if maximum SST  (Tmax) ≤ 32 °C and  Tmax (future) ≥  Tmax (contemporary) and MRR 
(future) ≤ MRR (contemporary) in a particular grid, the inhabited fish population stays in the same grid (no 
habitat range shift).

Model condition 2: if  Tmax ≤ 32 °C and  Tmax (future) ≤  Tmax (contemporary) or MRR (future) ≤ MRR (contem-
porary), the inhabited fish population remains in the same grid.

Model condition 3: If  Tmax > 32 °C or  Tmax (future) ≥  Tmax (contemporary) and MRR (future) ≥ MRR (contem-
porary), the inhabited fish population moves to the nearest grid location where MRR (contemporary) ≤ MRR 
(future).

Model building, running, and mapping (m_map toolbox v1.462) were completed using the MATLAB R2022a 
version (University of Maine academic license 358,411). Cartesian climate data grids were re-gridded into regu-
lar latitude and longitude grids using area-weighted bilinear interpolation in Climate Data Operators (CDO 
v.1.9.963). Fish E value calculation, statistical analysis, and thin-plate spline interpolation (fields library v.11.664) 
were conducted in R v 4.0.3 (www.r- proje ct. org).

Statistical analysis. The Arrhenius-Boltzmann  relationship50, (Eq. 2) was used to model the relationship 
between fish routine metabolic rates with the absolute temperature. The plot of natural logarithm transformed 
routine metabolic rates (ln (metabolic rate)) with the inverse temperature  (T−1) yields a slope that is equal to 
− E/K where E is the enzyme activation energy, and the K is the Boltzmann constant. To estimate this relation-
ship, we used the least-square regression (model I) in this study assuming its statistical robustness of scaling 
metabolic rates with independent variables such as body mass and  temperature50. E values with probability 
(p) < 0.05 were considered significant.

Data availability
AquaMaps habitat probability data and temperature envelope data can be found at: https:// www. aquam aps. 
org/. Contemporary and the IPCC CMIP5 predicted future SST data are available at the Marine Copernicus 
database: https:// marine. coper nicus. eu/ and https:// esgf- node. llnl. gov/ proje cts/ cmip5/ respectively. ETOPO5 v2 
bathymetry data are available at the https:// www. ngdc. noaa. gov/ web link. Fish standard/routine metabolic rates 
are available in the main/supplementary sections of the respective manuscripts or by contacting the respective 
authors of each manuscript. All the processed data will be shared upon the manuscript acceptance. PIBCM code 
is available from the corresponding author upon reasonable request. Codes compiled to downscale CMIP5 SST 
data are available at the GitHub repository https:// github. com/ Akila TH/ CMIP5_ downs caling.

Received: 22 August 2022; Accepted: 29 November 2022

References
 1. Reygondeau, G. & Beaugrand, G. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol. 17, 

756–766 (2011).
 2. Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. 

Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).
 3. Bosso, L. et al. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. 

Biol. Invasions 24, 3169–3187 (2022).
 4. Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).
 5. Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
 6. Kaschner, K., Watson, R., Trites, A. W. & Pauly, D. Mapping world-wide distributions of marine mammal species using a relative 

environmental suitability (RES) model. Mar. Ecol. Prog. Ser. 316, 285–310 (2006).

http://www.r-project.org
https://www.aquamaps.org/
https://www.aquamaps.org/
https://marine.copernicus.eu/
https://esgf-node.llnl.gov/projects/cmip5/
https://www.ngdc.noaa.gov/
https://github.com/AkilaTH/CMIP5_downscaling


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21781  | https://doi.org/10.1038/s41598-022-25419-4

www.nature.com/scientificreports/

 7. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope 
models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).

 8. Buckley, L. B. Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am. Nat. 
171, E1–E19 (2008).

 9. Kolbe, J. J., Kearney, M. & Shine, R. Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. 
Ecol. Appl. 20, 2273–2285 (2010).

 10. Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535 (2011).
 11. Somero, G. N., Lockwood, B. L. & Tomanek, L. Biochemical Adaptation: Response to Environmental Challenges, From Life’s Origins 

to the Anthropocene (Sinauer Associates, 2017).
 12. Kuo, E. S. & Sanford, E. Geographic variation in the upper thermal limits of an intertidal snail: Implications for climate envelope 

models. Mar. Ecol. Prog. Ser. 388, 137–146 (2009).
 13. Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential 

distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).
 14. Gamliel, I. et al. Incorporating physiology into species distribution models moderates the projected impact of warming on selected 

Mediterranean marine species. Ecography 43, 1090–1106 (2020).
 15. Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts 

under climate change. Conserv. Lett. 3, 203–213 (2010).
 16. Buckley, L. B., Waaser, S. A., MacLean, H. J. & Fox, R. Does including physiology improve species distribution model predictions 

of responses to recent climate change?. Ecology 92, 2214–2221 (2011).
 17. Fry, F. E. J. Effects of the environment on animal activity. Pub. Ontario Fish. Lab. No. 68. Toronto Studies Biol. Ser. 55, 1–52 (1947).
 18. Brett, J. R. Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater 

ecology of sockeye salmon (Oncorhynchus nerkd). Am Zoologist 11, 99–113 (1971).
 19. Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 

95–97 (2007).
 20. Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
 21. Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).
 22. Donelson, J. M., Munday, P. L., McCormick, M. I. & Pitcher, C. R. Rapid transgenerational acclimation of a tropical reef fish to 

climate change. Nat. Clim. Change 2, 30–32 (2012).
 23. Pörtner, H. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Natur-

wissenschaften 88, 137–146 (2001).
 24. Pörtner, H.-O. Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in 

marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
 25. Clark, T. D., Sandblom, E. & Jutfelt, F. Response to Farrell and to Pörtner and Giomi. J. Exp. Biol. 216, 4495–4497 (2013).
 26. Farrell, A. P. Aerobic scope and its optimum temperature: Clarifying their usefulness and limitations: Correspondence on J. Exp. 

Biol. 216, 2771–2782. J. Exp. Biol. 216, 4493–4494 (2013).
 27. Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).
 28. Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. 

Science 348, 1132–1135 (2015).
 29. Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 

293, 2248–2251 (2001).
 30. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 

(2004).
 31. Clarke, A. Is there a universal temperature dependence of metabolism?. Funct. Ecol. 18, 252–256 (2004).
 32. Clarke, A. & Fraser, K. P. P. Why does metabolism scale with temperature?. Funct. Ecol. 18, 243–251 (2004).
 33. Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression 

in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).
 34. Dhillon, R. S. & Schulte, P. M. Intraspecific variation in the thermal plasticity of mitochondria in killifish. J. Exp. Biol. 214, 

3639–3648 (2011).
 35. Fangue, N. A., Podrabsky, J. E., Crawshaw, L. I. & Schulte, P. M. Countergradient variation in temperature preference in popula-

tions of killifish Fundulus heteroclitus. Physiol. Biochem. Zool. 82, 776–786 (2009).
 36. Healy, T. M. & Schulte, P. M. Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the 

common killifish (Fundulus heteroclitus). Physiol. Biochem. Zool. 85, 107–119 (2012).
 37. Chust, G. et al. Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES J. Mar. Sci. 71, 

241–253 (2014).
 38. Norin, T., Malte, H. & Clark, T. D. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated 

temperatures. J. Exp. Biol. 217, 244–251 (2014).
 39. Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological 

thermal tolerance. Funct. Ecol. 30, 903–912 (2016).
 40. Raffel, T. R. et al. Disease and thermal acclimation in a more variable and unpredictable climate. Nat. Clim. Change 3, 146–151 

(2013).
 41. Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body tempera-

tures?. Ecol. Lett. 19, 1372–1385 (2016).
 42. Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).
 43. Pörtner, H.-O. & Giomi, F. Nothing in experimental biology makes sense except in the light of ecology and evolution: Correspond-

ence on J. Exp. Biol. 2771-2782. J. Exp. Biol. 216, 4494–4495 (2013).
 44. Pörtner, H.-O. How and how not to investigate the oxygen and capacity limitation of thermal tolerance (OCLTT) and aerobic 

scope: Remarks on the article by Gräns et al. J. Exp. Biol. 217, 4432–4433 (2014).
 45. Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).
 46. Killen, S. S., Atkinson, D. & Glazier, D. S. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle 

and temperature. Ecol. Lett. 13, 184–193 (2010).
 47. Norin, T. & Gamperl, A. K. Metabolic scaling of individuals vs. populations: Evidence for variation in scaling exponents at different 

hierarchical levels. Funct. Ecol. 32, 379–388 (2018).
 48. Jayasundara, N., Kozal, J. S., Arnold, M. C., Chan, S. S. L. & Giulio, R. T. D. High-throughput tissue bioenergetics analysis reveals 

identical metabolic allometric scaling for teleost hearts and whole organisms. PLoS ONE 10, e0137710 (2015).
 49. Kinnison, M. T., Unwin, M. J. & Quinn, T. P. Migratory costs and contemporary evolution of reproductive allocation in male 

chinook salmon. J. Evol. Biol. 16, 1257–1269 (2003).
 50. Clarke, A. & Johnston, N. M. Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim. Ecol. 68, 893–905 

(1999).
 51. Duvernell, D. D., Lindmeier, J. B., Faust, K. E. & Whitehead, A. Relative influences of historical and contemporary forces shaping 

the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol. Ecol. 17, 1344–1360 (2008).



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21781  | https://doi.org/10.1038/s41598-022-25419-4

www.nature.com/scientificreports/

 52. Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projec-
tions for climate change impact assessments. Sci. Data 7, 1–14 (2020).

 53. Franke, R. Scattered data interpolation: Tests of some methods. Math. Comput. 38, 181–200 (1982).
 54. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, 15. 

https:// doi. org/ 10. 1029/ 2012G L0511 06 (2012).
 55. Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species (Worldwide Web Electronic Publication, 2019).
 56. Jayasundara, N. Ecological significance of mitochondrial toxicants. Toxicology 391, 64–74 (2017).
 57. Beers, J. M. & Jayasundara, N. Antarctic notothenioid fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during 

long-term evolution at cold and stable temperatures?. J. Exp. Biol. 218, 1834–1845 (2015).
 58. Lear, K. O. et al. Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 

191, 829–842 (2019).
 59. Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature 

and ice concentration analyses. Remote Sens. 12, 720 (2020).
 60. Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).
 61. Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Model. 221, 467–478 (2010).
 62. Pawlowicz, R. M_Map: A Mapping Package for MATLAB, Version 1.4 m. Computer Software, UBC EOAS. https:// www. eoas. ubc. 

ca/ rich/ map. html (2020).
 63. Schulzweida, U., Kornblueh, L. & Quast, R. CDO User’s Guide. Climate Data Operators, Version 1, (2006).
 64. Nychka, D., Furrer, R., Paige, J. & Sain, S. Fields: Tools for Spatial Data. R Package Version 11.6. (2017).
 65. Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific 

populations to changing environments. Mol. Ecol. 27, 659–674 (2018).
 66. da Silva, C. R. B., Riginos, C. & Wilson, R. S. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating 

environment. J. Comp. Physiol. B. 189, 385–398 (2019).
 67. Slesinger, E. et al. The effect of ocean warming on black sea bass (Centropristis striata) aerobic scope and hypoxia tolerance. PLoS 

ONE 14, e0218390 (2019).
 68. Moffett, E. R., Fryxell, D. C., Palkovacs, E. P., Kinnison, M. T. & Simon, K. S. Local adaptation reduces the metabolic cost of envi-

ronmental warming. Ecology 99, 2318–2326 (2018).
 69. Turker, H. The effect of water temperature on standard and routine metabolic rate in two different sizes of Nile tilapia. Kafkas 

Universitesi Veteriner Fakultesi Dergisi 17, 575–580 (2011).
 70. Hvas, M., Folkedal, O., Imsland, A. & Oppedal, F. The effect of thermal acclimation on aerobic scope and critical swimming speed 

in Atlantic salmon, Salmo salar. J. Exp. Biol. 220, 2757–2764 (2017).
 71. Ohlberger, J., Mehner, T., Staaks, G. & Hölker, F. Intraspecific temperature dependence of the scaling of metabolic rate with body 

mass in fishes and its ecological implications. Oikos 121, 245–251 (2012).
 72. Kunz, K. L. et al. New encounters in Arctic waters: A comparison of metabolism and performance of polar cod (Boreogadus saida) 

and Atlantic cod (Gadus morhua) under ocean acidification and warming. Polar Biol. 39, 1137–1153 (2016).
 73. Norin, T., Bailey, J. A. & Gamperl, A. K. Thermal biology and swimming performance of Atlantic cod (Gadus morhua) and had-

dock (Melanogrammus aeglefinus). PeerJ 7, e7784 (2019).
 74. Nowell, L. B. et al. Swimming energetics and thermal ecology of adult bonefish (Albula vulpes): A combined laboratory and field 

study in Eleuthera, The Bahamas. Environ. Biol. Fishes 98, 2133–2146 (2015).
 75. Pang, X., Yuan, X.-Z., Cao, Z.-D., Zhang, Y.-G. & Fu, S.-J. The effect of temperature on repeat swimming performance in juvenile 

qingbo (Spinibarbus sinensis). Fish Physiol. Biochem. 41, 19–29 (2015).
 76. Schwieterman, G. D. et al. Metabolic Rates and Hypoxia Tolerences of clearnose skate (Rostaraja eglanteria), summer flounder 

(Paralichthys dentatus), and thorny skate (Amblyraja radiata). Biology 8, 56 (2019).
 77. Xie, H. et al. Effects of acute temperature change and temperature acclimation on the respiratory metabolism of the snakehead. 

Turk. J. Fish. Aquat. Sci. 17, 535–542 (2017).

Acknowledgements
We are incredibly grateful to all the authors who shared routine/standard metabolic rate date for E value calcula-
tion. Also, we appreciate the services rendered to us by the University of Maine Advanced Computing Group.

Author contributions
N.J. and A.H. conceptualized the study. A.H., N.J., and H.X. designed the analysis and processed the data. A.H. 
conducted the analysis and compiled the initial manuscript. N.J., S.S., and H.X. contributed to editing and revis-
ing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 25419-4.

Correspondence and requests for materials should be addressed to N.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1029/2012GL051106
https://www.eoas.ubc.ca/rich/map.html
https://www.eoas.ubc.ca/rich/map.html
https://doi.org/10.1038/s41598-022-25419-4
https://doi.org/10.1038/s41598-022-25419-4
www.nature.com/reprints


16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21781  | https://doi.org/10.1038/s41598-022-25419-4

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming
	Results
	Species-specific biochemical activation energies—E values. 
	Sensitivity analysis. 
	Contemporary coastal SST variability in the study area. 
	The climate model projected coastal SST variability. 
	Atlantic killifish thermal envelope-specific E values. 
	Predicted contemporary and future metabolic rate range (MRR) distribution. 
	PIBCM predicted Atlantic killifish habitat shifts. 
	Comparison between AquaMaps and PIBCM predicted Atlantic killifish distribution. 

	Discussion
	Materials and methods
	Species-specific E value calculation. 
	Sensitivity analysis. 
	Atlantic Killifish habitat distribution data. 
	Contemporary coastal Sea Surface Temperature (SST) data. 
	Downscaling the climate model projected SST data. 
	Metabolic Rate Range (MRR) calculation. 
	AquaMaps model predictions for F. heteroclitus future distribution. 
	Physiology integrated bio-climate model (PIBCM) development. 
	Statistical analysis. 

	References
	Acknowledgements


