1. Evaluate each limit. NOTE: You can't use L'Hospital's rule because we haven't learned that!
(a) $\lim _{\theta \rightarrow 0} \frac{\theta^{2}+\tan (\theta)}{\sin (\theta)}$
(b) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(2 x)}{3 x^{2}}$
(c) $\lim _{x \rightarrow 1} \frac{\arctan (x)-\frac{\pi}{4}}{x-1}$
2. A round bottomed beaker (pictured below) is initially empty and is filled with water at a constant rate.

(a) Let $h(t)$ be the height of water in the hourglass as a function of time. Give a sketch of the graph of $h(t)$.
Make sure your sketch is correct in terms of concavity.
(b) Sketch $h^{\prime}(t)$.
(c) Let t_{1} represent the time when the hourglass is half full. Is $h^{\prime \prime}\left(t_{1}\right)$ positive, negative or zero?
3. Consider the curve given by parametric equations

$$
x=\frac{2 t}{t+1} \quad y=e^{\sqrt{t}}
$$

(a) Find $\frac{d y}{d x}$ in terms of t. You don't need to simplify your answer.
(b) Find the equation of the tangent line to the curve at the point $(1, e)$.

Let g be a differentiable function with

$$
g(4)=1 \quad g^{\prime}(4)=-1 \quad g^{\prime \prime}(4)=-5
$$

and let

$$
H(x)=g\left(x^{2}\right)
$$

Lebron James and Steph Curry are having a heated discussion about the function H.
(a) Lebron claims the function H is increasing at the point where $x=2$. Determine if he is correct. Show your work.
(b) Steph claims that H is concave down at the point where $x=2$. Is he right? Show your work.
4. (a) Find the first five derivatives of $f(x)=x \sin (x)$. At each stage simplify your answer.
(b) Use the pattern you observe in your work from part (a) to determine $f^{(30)}(x)$.
5. Find all the points on the ellipse $3 x^{2}+y^{2}=12$ where the slope of the tangent line is -1 .

6. Consider the curve given by parametric equations

$$
x=\frac{4 t}{t+1} \quad y=\ln (\sqrt{t})
$$

(a) Find $\frac{d y}{d x}$ in terms of t. You don't need to simplify your answer.
(b) Find the equation of the tangent line to the curve at the point $(2,0)$.
7. The following is a graph of the velocity of a particle that is moving along a straight line. (Time t is measured in seconds, velocity is in meters per second, and $0 \leq t \leq 9$.)

(a) Give a sketch of the acceleration function, $a(t)$.
(b) We also know that at time zero the particle is at position zero.

Give a sketch of the position function $s(t)$. Make sure your sketch is correct in terms of concavity.
(c) When is the particle moving in the positive direction?

