google scholar - ORCiD

How do scientists decide where to submit manuscripts? Many factors influence this decision, including prestige, acceptance probability, turnaround time, target audience, fit, and impact factor. Here, we present a framework for evaluating where to submit a manuscript based on the theory of Markov decision processes. We derive two models, one in which an author is trying to optimally maximize citations and another in which that goal is balanced by either minimizing the number of resubmissions or the total time in review. We parameterize the models with data on acceptance probability, submission-to-decision times, and impact factors for 61 ecology journals. We find that submission sequences beginning with Ecology Letters, Ecological Monographs, or PLoS ONE could be optimal depending on the importance given to time to acceptance or number of resubmissions. This analysis provides some guidance on where to submit a manuscript given the individual-specific values assigned to these disparate objectives.           wordle

Question: Most of our theoretical and empirical knowledge of phenotypic plasticity is limited to changes in single traits under variation of a single environmental variable. Are insights drawn from this “univariate” world-view different than if we were to study individuals as the integration of many traits in response to many environmental variables? Organisms: Sheepshead minnows, Cyprinodon variegatus, from Gulf Islands National Seashore, Florida.
Methods: We reared individuals at different temperature-food availability combinations (3x3 factorial design) over ~6 months. We measured growth, age and size at maturation, gonadosomatic index, hepatosomatic index, and body shape. We also estimated levels of phenotypic integration and relative fitness for males and females at each of the nine treatments.
Results/conclusions: Most traits responded to temperature and food directly and some exhibited interactions in their response. Phenotypic integration and fitness changed substantially under different environments, and differently for males compared to females. Studying responses from this integrated perspective led to insights that could not have been obtained studying single traits or single environmental variables.           wordle

In some species, parents are always right. In the past few years, we have learned that parents can predict the environment the offspring will experience and get them ready for it—a biological head-start of sorts. As the climate changes rapidly, some ecologists have suggested that these effects may help species along. Not so fast, write Welch and colleagues in this issue of Nature Climate Change, showing that a tropical damselfish cannot help their offspring’s predation-avoidance behavior when exposed to high CO2 levels. For them, it will have to be adaptation or bust.        

Climate change continues to impact species worldwide. Understanding and predicting how populations will respond is of clear importance. Here, we review a mechanism by which populations may respond rapidly to these changes: Trans-Generational Plasticity (TGP). TGP exists when the environment experienced by the parents affects the shape of the reaction norm in their offspring; that is, the parental and offspring environments interact to determine the offspring phenotype. We survey 80 empirical studies from 63 species (32 orders, 9 phyla) that demonstrate TGP. Overall, TGP is taxonomically widespread and present in response to environmental drivers likely to be impacted by climate change. Although many examples now exist, we also identify areas of research that could greatly improve our understanding of TGP. We conclude that TGP is sufficiently established both theoretically and empirically to merit study as a potential coping tactic against rapid environmental changes.           wordle

The application of evolutionary principles to the management of fisheries has gained considerable attention recently. Harvesting of fish may apply directional or disruptive selection to key life-history traits, and evidence for fishery-induced evolution is growing. The traits that are directly selected upon are often correlated (genetically or phenotypically) with a suite of interrelated physiological, behavioral, and morphological characters. A question that has received comparatively little attention is whether or not, after cessation of fishery-induced selection, these correlated traits revert back to previous states. Here, we empirically examine this question. In experiments with the Atlantic silverside, Menidia menidia, we applied size-selective culling for five generations and then maintained the lines a further five generations under random harvesting. We found that some traits do return to pre-harvesting levels (e.g., larval viability), some partially recover (e.g., egg volume, size-at-hatch), and others show no sign of change (e.g., food consumption rate, vertebral number). Such correlations among characters could, in theory, greatly accelerate or decelerate the recovery of fish populations. These results may explain why some fish stocks fail to recover after fishing pressure is relaxed.           wordle

Transgenerational plasticity (TGP), a generalisation of more widely studied maternal effects, occurs whenever environmental cues experienced by either parent prior to fertilisation results in a modification of offspring reaction norms. Such effects have been observed in many traits across many species. Despite enormous potential importance—particularly in an era of rapid climate change—TGP in thermal growth physiology has never been demonstrated for vertebrates. We provide the first evidence for thermal TGP in a vertebrate: given sufficient time, sheepshead minnows adaptively program their offspring for maximal growth at the present temperature. The change in growth over a single generation (c. 30%) exceeds the single-generation rate of adaptive evolution by an order of magnitude. If widespread, transgenerational effects on thermal performance may have important implications on physiology, ecology and contemporary evolution, and may significantly alter the extinction risk posed by changing climate.           wordle

The mummichog, Fundulus heteroclitus, is a widely distributed fish that has been extensively researched in the southern portion of its range (south of Cape Cod, MA). During the summers of 2003 and 2004, we studied the reproductive ecology of F. heteroclitus in a northern population (Northeast Creek, Mount Desert Island, Maine). Our direct observations show that unlike more southern populations, northern F. heteroclitus spawns daily during its two-month spawning season, with no preference for spring tides over the entire season. However, within consecutive semidiurnal tides significantly more spawning was associated with the higher high tide. Spawning occurred on bare gravel and on mud associated with the grass Spartina patens. Spawning was highly promiscuous with males typically spawning in groups with females in very shallow water during receding tides. These temporal and spatial patterns of oviposition caused eggs to be deposited in a much broader range of habitats than in southern populations of this species. We present and evaluate critically several hypotheses that may explain the variation in spawning patterns observed in this species.           wordle

Many ectotherms exhibit striking latitudinal gradients in lifespan. However, it is unclear whether lifespan gradients in distantly related taxa share a common mechanistic explanation. We compiled data on geographic variation in lifespan in ectotherms from around the globe to determine how much of this intraspecific variation in lifespan may be explained by temperature using the simple predictions of the metabolic theory of ecology. We found that the metabolic theory accurately predicts how lifespan varies with temperature within species in a wide range of ectotherms in both controlled laboratory experiments and free-living populations. After removing the effect of temperature, only a small fraction of species showed significant trends with latitude. There was, however, considerable residual intraspecific variation indicating that other, more local factors are likely to be important in determining lifespan within species. These findings suggest that, given predicted increases in global temperature, lifespan of ectotherms may be substantially shortened in the future.           wordle

The killifish, Fundulus heteroclitus, has been studied intensively, yet little is known about its reproductive behavior in the field. The majority of what is known about its reproductive biology has been done using individuals from populations south of Cape Cod, often with the southern subspecies, and most of the work has been done in the laboratory. During 2003, we studied the reproductive biology of the northern subspecies of F. heteroclitus in a salt marsh habitat (Northeast Creek) and of a congener, F. diaphanus, in a nearby freshwater lake (Lakewood). Specifically, we examined the mating systems of these species, factors affecting time and intensity of spawning, and salinity effects on sperm motility and fertilization ability.           wordle